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Viscoelastic Continuum Model of Nonpolar Solvation. 1. Implications for Multiple Time
Scales in Liquid Dynamics
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A continuum model of nonpolar solvation is presented. Coupling of the solute to the solvent is assumec
occur through a change in the solute’s size or shape upon electronic excitation. Both spherical and nonsphe
changes in the solute are treated. The time-dependent shear and longitudinal moduli of the solvent deter
the solvation response function. Unlike prior continuum models of solvation, both a rapid, viscosity-independ
inertial component and a slower, viscosity-dependent diffusive component emerge from the model, e
when only one time scale is assumed in the moduli. The origin of multiple time scales in this model, whi
has a single solvent coordinate with complex dynamics, is contrasted with treatments such as the multim
Brownian oscillator models, which postulate multiple solvent coordinates, each with simple dynamics.

I. Introduction experiments have shown that the rapid component is the high-
temperature extrapolation of the phonon-induced relaxation in
the solid. Because of this specific experimental assignment,
we refer to the rapid component of nonpolar solvation as the
“phonon-induced” component, rather than using the less specific
term, “inertial”. Computer simulation has also shown that this
component can include weak oscillaticsalthough current
experiments have not been able to test this prediction.

In contrast to the phonon-induced component, the slower

Relaxation on multiple time scales has long been recognized
as a key feature in the dynamics of high-viscosity liquids.
However, early work on dynamics in low-viscosity liquids often
focused on a single relaxation time. Continuum models are
found to be a surprisingly successful first approximation to these
dynamics® More recently, both improved experiments and
computer simulation have shown that a second “inertial” time

scale exists in addition to the previously recognized “diffusive” ) . . o .
component’s relaxation time is directly proportional to the

time scale’=7 This paper shows that the existence of these two vent vi ity In the al thi td  rel
time scales and their most prominent experimental features can>Ovent viscosily. 1n the giass, this component does not refax
be predicted from a continuum model, at least for nonpolar at all but is responsible for static inhomogeneous broadening

solvation. Although continuum models have obvious limitations of electr.om(': transitions. We have assigned this component to
in describing real systems with molecular structure, their reorganization of the structure thfat supported th.e phonon-like
simplicity is a major advantage in discussing the qualitative motion during the earlier phonon-induced relaxation. Because

physics underlying the model. This paper contrasts the “dy- of this assignment, we have used the specific term “‘lst.ructgrayly”
namical’ origin of multiple time scales embodied in the relaxation, instead of the more general description “diffusive

continuum model with other “spectroscopic” explanations. relaxatlor.l.. )
The general features of liquid dynamics are mirrored in In addition to these experimental results, there have been

electronic state solvation. When a solute molecule undergoesS€Veral theoretical studies of nonpolar solvation dynamics.

a change in electronic structure, either due to progress along avalsh and Loring looked at the first stage of solvation and its

reaction coordinate or due to a change in electronic state, the€fféct on photon echo experiments with a ballistic treatrint.

surrounding solvent undergoes a time-dependent reorganizatiorF@danyi and Stratt have looked at the early portion of solvation
to optimize the solvation of the new electronic structure. USINg an instantaneous normal mode anaisisarsen et al.

Solvation mechanisms are broadly classified as “polar” when h_ave _explored co_nnecti_ons between nonpolar solv‘_ation and
solvent molecule reorientation is predominant, as occurs with ViPrational relaxation using the same metti8dKalbfleisch,
dipole—dipole interactions with a polar solvehtl” and “non- Ziegler, and Keyes used a similar approach to look at solvation
polar” when solvent molecule center-of-mass motion is " h|gh-pressu_re gass_é’s.Evans also looked at the first steps
predominant?-26 of solvation using kinetic theord? Stephens, Saven and Skinner
In the case of nonpolar solvation, transient hole-burning have used approximations based on dropping certain high-order

experiments have established the basic time scales invéivdd correlation effects to look at nonpolar solvation on a complete
. ! 24 X X X

At high viscosity, a rapid, subpicosecond relaxation is clearly ][angg of t'][neh scale@; Ba%Ch' has exam!n;ed the correllqgtfn

separated from a slower relaxation. The rapid component is ‘fnCt'Ion (I) tde tort]a grlour_1 -state Ipo_tenlfla energy, Wd'c IS

approximately viscosity independent. It remains subpicosecond$10S€'Y related to the solvation correlation function, using density

i 5
in the high-viscosity supercooled liquid and even persists in funct!onal theory: . i
the glassy solid. In the solid, this component results from  ThiS paper presents a continuum model for nonpolar solvation.

interactions with the phonons of the environment. In the liquid, A change in the solute’s effective size or shape upon electronic
excitation is assumed to be the primary interaction driving

tTel: (803) 777-1514. Fax: (803) 777-9521. Email: berg@psc.sc.edu. NOnpolar solvation. Following excitation, the solvent must move
@ Abstract published ilddvance ACS Abstractfecember 15, 1997.  to allow the solute cavity to expand. This movement is modeled
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by treating the solvent as a viscoelastic continuum. The provides an example in which the observed spectral density is
solvation reponse function is then calculated from the time- or not closely related to such a set of modes.
frequency-dependent mechanical moduli of the solvent. This  The discussion of these points is predicated on the assumption
model is an analog of continuum models of polar solvation, that the viscoelastic model is a good first-order description of
which predict solvation dynamics from the frequency-dependent the important physical porcesses involved, an assumption that
dielectric constant: 17 is supported by several other studies. This model has already
Although microscopic theories clearly deal with the effects Peen used to quantitatively fit temperature-dependent solvation
of liquid structure more realistically than continuum models, data in two different systent§:* Oscillations in the response
there are several important advantages to a continuum modelfunction, which have been seen in computer simulation under
of solvation. Despite the neglect of liquid structure, continuum SOMe condition$? are explained by this model. Computer

models are frequently found to capture a surprising amount of simulatjons of electron solvation have also identified the
the essential physics involved and have been very influential solvent’s response to changes in the size and shape of the solut:

in the development of more sophisticated theories of liquid @ Major components of the solvation proc¥s$; and this

dynamics®® Continuum models are generally regarded as model gives quantitative fits to those simulatidfs.

providing an excellent approximation to processes such as Although certain formulas resulting from33this model have
molecular reorientatidhand polar solvatiohe on times longer ~ Peen used in analyzing experimental di&t#,**the details of

than a picosecond. Zwanzig and Bixtifollowed by Metiu its derivation have not been published previously. The effects
Oxtaby, and Freéd showed that a viscoelastic continuum model ,Of changes n shape, in addition to changes in size, are
of the velocity autocorrelation function works well, even on incorporated into the model presented here. These results have
the 100 fs time scale. Because continuum models require not appeargd before.. .

relatively simple input data, they are often easier to compare to , 1 e detailed description of the model and the development
experimental data than microscopic theories. The continuum ©f the equations implementing it are contained in section II.
model of solvation presented here has already been compare(;rhe solution of these equatlons n outllned in the .Appendlx,.
to experimental data over a broad range of temperature in and_the general Pproperties of the solutions are discussed in
supercooled liquid283233 The simplicity of continuum models section 1ll. Section IV discusses how phonon-induced and

also gives a readily apparent conceptual picture of the dynamicssnmturalI relaxa_nons are thalned as I_ong- and shc_>r'_[-t|me limits
involved. of the full solution. Section V examines the validity of the

i ) approximate decomposition of the complete solution into the
Despite the early success of continuum models, even at veryg,m of a phonon-induced and a structural component. An exact
short times}>%" there is currently much discussion in the decomposition of the solution is presented to highlight the
literature characterizing inertial dynamics as fundamentally important distinction between decomposing a response function
“single molecule” or at least intimately connected to molecular jnig two components and having those two components behave
structure. This paper shows that although molecular structureingependently as conditions change. A discussion of the
is important for describing the details of inertial dynamics, the gifferences between the current “dynamical’ approach to
baS|C features are Contalned W|th|n a Continuum pICtUI‘e explaining the mu|t|p|e tlme Scales in ||qu|ds and the “Spectro_
In part, this discussion arises because earlier continuumscopic” approach used in other models is contained in section
models of solvation did not predict the existence of inertial VI. A final summary is presented in section VII.
dynamics. The model of nonpolar solvation presented here
shows that this limitation is not fundamental to a continuum II. Definition of the Model

treatment but is due to the details of implementing the model. . . .
P g A. Overview. The solute is modeled as a nearly spherical

In the current model, a full equation of motion is written for VN . . . .
cavity within a viscoelastic continuum representing the solvent

the solvent displacement as a function of time and position. (Figure 1). The boundary between solute and solvent is shar
The time dependence of the displacement comes both from the g ) y P

. : - and acted on by two sets of forces: one from the solvent tending
time/frequency dependence of the moduli and from inertial terms I h . f h | L h
in the equation of motion. Approximations could be used to to collapse the cavity and one rom the solute resisting the
relate the experimental bé rvable directly to the solvent moduli collapse. Beford = 0, the solute is in the ground electronic
€ perimental obse € directly to the Solve odu " state, and the cavity radius equilibrates at a certain sizet At
These approximations avoid the complexities of a full equation

f motion. but onlv at th f losing the inertial effect = 0, the solute is transferred to the excited electronic state,
of motion, but only at the expense of losing the inertial eflects. instantaneously increasing (or decreasing) the solute forces or

The relative simplicity of this model is exploited to make the cavity boundary. To regain equilibrium, the cavity must
three major points concerning the physical origin of inertial and expand (contract). This expansion (contraction) lowers the
diffusive relaxation. First, the existence of an inertial component system energy and causes a solvation-induced Stokes shift.
in solvation dynamics is not essentially connected with molec-  The solute forces include the direct forces from the solvent
ular structure or single molecule motion. Structural effects are gg|ute intermolecular potential and the free energy of organizing
preeminent only in an even shorter “ballistic” time regime. the solvent molecules around the solute cavity (i.e., the “surface
Second, this model attributes the existence of two times scalestension”). The change in the solute force at 0 is caused by
to two stages of relaxation, first by coherent phonon emission the difference in the solvensolute potential between the
and then by viscous flow to relieve shear stress, occurring alongground and excited states. Many different specific mechanisms
a single solvent coordinate, the cavity radius. This explanation may be responsible for this difference: changes in repulsive
contrasts with approaches such as multimode Brownian oscil- forces generated by the overlap of the molecular cores, changes
lator models® which assign different time scales to distinct in internal bond lengths, changes in dispersion (polarizability
solvent coordinates. Third, the time-dependent results of the polarizability) interactions, changes in dipelpolarizability
model are transformed to frequency-domain spectral densitiesinteractions, and so on. All of these “nonpolar” mechanisms
to test the idea that a spectral representation gives an accurat@roduce forces that are strongly concentrated in the first layer
picture of a set of underlying solvent modes. This model of solvent and that act primarily between the centers-of-mass
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strain tensor is defined as the symmetric spatial derivative of
the displacement

ex

/ /

\
k“%mQ#**j
pek G(t), K(t)

_18ui+8uj 4
6ij—éa_xj o (4)

In isotropic material, the strain can also be decomposed into a
scalar, compressive strain

OD=Tre (5)
/ — \ and a second-rank shear strain
N\
Pey)\ Standard mechanics posits a linear relationship between stres:
and strain, with moduli as the proportionality constants. In
t=0 viscoelastic treatments, the magnitude of the moduli are allowed

; ; 45
Figure 1. Schematic illustration of the boundary conditions of the to vary with the duration of the_ staft:®> Thus for the shear
model. The solute occupies the central cavity (heavy line). A viscoelastic OmMponents of stress and strain
solvent (lined region) fills the space between the solute and the external
boundary. Fort < 0, the balance of forces on the cavity boundary @ — [t oy )y A
determines the cavity radius at equilibrium in the ground staté.=At o) = f_ooZu(t ) (1) at )
0, the solute jumps to its excited state, _an_d the ogtwa_rd pressure from
the SO'Utte)I_CuaggeSS- AS; ©,a ’]jeW eqg"?_”‘_m ca\fntz size and shape  \yherey(t) is the impulse shear response function and the factor
are established. See the text for the definition of the parameters. of 2 is conventional. The time-dependent shear modulus is
defined as the time-dependent force needed to maintain a step:

of the solute and solvent. They are all treated equivalently function shear displacement

within the model as a change in the radial force on a sharp
cavity boundary. The model does not incorporate “polar” ;
solvation mechanisms such as dipole-diféfeor dipole- G(t) = [ u(t) dt (8)
guadrupole interactiorfS. These interactions are inherently

long-range and produce primarily torques rather than center- a short times, a liquid will resist a shear displacement with a

of-mass forces. _ _ modulusG(t=0) = G.. With time, the resistance drops, and
The forces on the cavity boundary from the solvent include the modulus decays to zero, i.&(t=0) = 0. The viscosity

the equilibrium external pressure and the nonequilibrium forces gpserved at long times is
generated in response to changes in the solute. The core of
this model is calculating the nonequilibrium forces from the w0
equation of motion for a viscoelastic continuum. From these n= ﬂ) G(t) dt ©)
forces, the time dependence of the cavity radius is calculated
and then translated into the time dependence of the electronic The compression impulse response functf is similarly
transition energy. defined by
B. Definition of Viscoelastic Quantities. The central
quantities of interest in this model are the mechanical stress t N OV or
and strain tensor¥:#5 The stress tensas is defined as the p() = [ k(1) €Ot (10)
force F per unit areaA
The time-dependent compression modulus
F=o0A Q)
K(t) = [o(t) ot (11)
The tensor notation incorporates both compressive forces acting 0
perpendicular to the area and shear forces acting parallel to the
area. In an isotropic material, only two tensor quantities are has a nonzero value both at short timk&=0) = K, and at

independent: the scalar isotropic pressure long times,K(t=c) = Ko. _ . .
Although the shear and compression moduli are the easiest

to define, the model solutions are often most easily expressed
in terms of the shear and longitudinal moduli. The longitudinal
functions are defined by

p=—"1,Tro )

and the second-rank shear stress tensor

o=+ pl @) v(t) = k(t) + Fau() (12)

. . . and
wherel is the unit matrix.
The movement of the solvent in response to these forces is 4
given by the displacement relative to a reference state. The M(t) = K(t) + "/3G(1) (13)
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With these definitions, the viscoelastic equation of motion The initial conditions for these variables are simpl&i(r,0)

is#445 = 0 andde(r,0) = 0.
) For small displacements from the equilibrium cavity size, the
au(t) _ fw {V(t—t)V[V-U(t)] — u(t—t)V x solute force is assumed to vary linearly with the displacement
ot? o A of the cavity boundary

[V x u(t)]} dt' (14)

ps,gﬁrb) = Pex — 3(Ks/rc,g)(rb B rc,g) (23)

wherep is the density. The term on the left represents inertial
effects associated with the momentum of each volume elementry,g ¢orce constaris is defined to have the units of a modulus
and is essential to describing wavelike motions in the solvent.
This term contributes a time dependence to the solutions that
is not included in the time dependence of the moduli themselves.

C. Boundary Conditions. The specific details of the model
are contained in the boundary conditions (Figure 1). In its
ground electronic state, the solute exerts a radial force per unit
areaps rp) on the interior boundary. The magnitude of this Psdlb) = Pex 3(Ks/rc,g)(rb ~Ted (24)
force depends explicitly on the size of the cavity Setting

this force equal to the solvent force at the boundary gives the e define a normalized solvensolute coupling constant
condition

and can be interpreted as the apparent compressibility of the
solute cavity. In the excited state, the force constant is assumec
to remain the same, but the equilibrium cavity size changes to
ree (Figure 1)

o™ T
t : ' ' —ce ‘cg
o) = — [ {2u(t-t) € (o) + [v(t—t) - CO.P =1 (25)
2u(t—t")] Tr e(r,,t')} dt' (15)
_ N . To model changes in shape of the excited state, the coupling
We also adopt slip boundary conditions; i.e., the solute exerts constant is allowed to be angle dependent. In the limit of weak

no tangential forces on the boundary coupling, C(6,¢) < 1, the deviations from a sphere will be
_ _ small. As an approximation, the cavity will be treated as quasi-
€rp(Tpl) = €rg(Tpt) =0 (16) spherical in all other respects. With weak coupling, the cavity

radii in the ground and excited states can be taken to be equal,
Iee ™ feg & Ie, Whenever they do not occur as differences. To
write eqs 23 and 24 in terms of the solvent displacement, note
that du(rp) = rp — reg The force laws in the ground and

The outer boundary of the solventraf (Figure 1) experiences
a constant external pressusg that acts radially. The radius
of the outer boundary is taken to infinity, giving the boundary

conditions excited states become

Pex = —f_tw{Zu(t—t’) (o) + [v(t—t) — Ps.fFd) = Pex — 3(KJrIOUL(r)) (26)
2u(t—t)] Tr e(oo,t")} dt' (17)

and Ps dre) = Psfro) + 3KL(6.9) (27)

These equations define a linear coupling between the solute
electronic state and the solvent.

Beforet = 0, the system is in equilibrium with the ground The change in solute force &t= 0 is incorporated as a time-
state of the solute. This condition occurs when the solute dependent extension of the boundary condition in eq 15
pressure equals the external pressure

6r¢(°°!t) = 6rt?(oo!t) =0 (18)

Pex — 3KJOUrot)/r ] + 3KL(0.9) H(Y) =

Psflcg =P 19) t ,
s T = Pex — [ {2ut—t) e (rt) — Tr e(roB] +
This equation defines the equilibrium cavity size in the ground v(t—t') Tr e(r,b)} dt’ (28)
statercg Under these conditions, the displacement of the
solvent is 0, t<0
H(t)={1 ‘>0 (29)
uq(r)=—&r Ir|>r (20)
€ 3K, ¢9 Laplace transforms of time-dependent quantities
measured relative to the system under zero pressure. The effect f(9 = fme—st f(t) dt (30)
0

of the external pressure is removed by defining deviations from

the equilibrium displacement and strain ) . )
are now introduced. In Laplace space, the equation of motion

ou(r,t) = u(r.t) + 2‘:(er (21) (eq 14) becomes
0 _ _
ou(r,s) = ’%)] v[V-ou(r,s)] — [/’LSSZ)]V x [V x ou(r,s)]
Se(rt) = e(r ) + 22| (22) i i

3Ky (31)
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and the boundary conditions in eqs-1B3 and 28 become

82 (1®) = 02, (1) = 0y (0.9 = 02, (09 =0 (32)

00,(.9

8—5 + [¥(9) — 2u(s)] V+ou(e,5) =0 (33)

29—

300, (r.S)

20—+ [M(9) — 2(] V0000 —
ou(r.d
K,———=

C

—3K, @ (34)

C

D. Experimental Observables. Equations 3134 define a
model for the complete solvent respongg, t) to electronic
excitation of the solute. However, we are interested in only

one component of that response, the Stokes shift induced by

the reaction of the solvent back on the solute. To calculate the
Stokes shift, eq 26 is integrated to give a potential function for
the movement of the cavity boundary in the ground state

Uy = Ko [0U(r,0,¢) dQ (35)

where d2 = sin 0 dfdg. If Upis the vertical transition energy
from the ground-state equilibrium position, the excited-state
potential is

Ue=Up — 3KI 2 [0u,(r..60.¢) dQ +
LK [ou(r.0.¢) dQ (36)

The electronic transition energy is given by the difference
potential

AU = U, — Uy = U, — 3Ky [ou(r.0.¢) C(6,¢) dQ
(37)

The time-dependent Stokes stit) is derived from the time-
dependent solvent displacement field

S = Ug — AU(t) = 3K [[0u(ro0,¢:t)/r JC(6,¢) dQ
(38)

Frequently, we will be most concerned with the solvation
response function, defined as

SO — S(»)
0) — )

Noticing that ou(r¢,0,p;0) = r.C(0,¢) allows the response
function to be written

R(t) = (39)

JT0u(r.0.9:0/r JC(0,¢) dQ
JC6.9) dQ

Rt)=1- 40)
I1l. Solution of the Model

The model developed in the last section can be solved
analytically without further approximation, as outlined in the
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= 0 component represents a spherical change in size upon
excitation. The even components with> 2 represent various
changes in shape with constant total volume. The components
with n odd include a forced displacement of the solute center-
of-mass. The time dependence of the Stokes shift depends only
on n, the principle index of the spherical harmonic, which
determines the shape change in the excited state. The Stoke:
shift is independent of the secondary indexvhich determines
the orientation of the shape change.

The solvation response function is the weighted average of
response functions for each multipole component

RO = S WR,0) (42)
T e

W, =— (42)
S (e

where thec,™ are the multipole moments of the coupling. The
time dependence of each multipole response function is
t ! !
R() =1~ [ x,(t) ot (43)
whereyn(t) is given by eq A18.
Equation 43 shows that,(t) is a generalized susceptibility
or impulse response function for the solvation experiment. By

the classical fluctuationdissipation theorerff it can be related
to the equilibrium fluctuations of the Stokes shift

d [0S,(H) 05,0)0

BCEEROR “

="

Time domain experiments are typically reported in terms of the
Fourier transform of the susceptibility

(@) = e (1) dt = 7, (i) (45)
which is related to the Laplace transform by the second equality.
The spectral density is defined asm ¥(w).

Equations A18-A21 and 43 constitute a complete solution
of the viscoelastic solvation model. The only input needed are
the two time-independent moduli(t) and K(t). For simple
exponential functions, the inverse Laplace transform from
7n(S) to yn(t) can be solved analytically (see section IV.C.), but
for nonexponential functions a numerical inversion is necessary.
The susceptibilitiegn(t) are defined so as to decay to zero at
infinite time, so a numerical inverse Laplace transform can be
avoided by using eq 45 and an inverse Fourier transform.

This continuum model of nonpolar solvation can be contrasted
with previous treatments of polar solvation. In the current
model, a full equation of motion (eq 14) is used to calculate
the complete solvent displacement field. The experimental
susceptibility is then projected from the full solvent response.
Previous continuum models of polar solvation have calculated
the experimental susceptibility directly from the bulk dielectric
susceptibility, avoiding a full equation of motion and the

Appendix. The complete solution decomposes into a summationcalculation of the complete solvent respofsé? This latter

of solutions for each multipole moment of the shape change.
This expansion has an analog in the treatment of polar
solvation?s—48 where an arbitrary charge redistribution is
expanded in multipole moments. In the nonpolar modelnthe

approach implicitly invokes a quasi-state approximation, in
which the equivalent of the inertial term of eq 14 is set to Zéro.

However, dropping the inertial term precludes propagating,
wavelike motion in the solvent and retains only the diffusive
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relaxation contained in the time-dependence of the dielectric for a nonassociated liguié>3and a benzene-sized solute (see
susceptibility itself. Because of this approximation, these earlier Figure 2) giver; = 275 fs andry = 160 fs. These times are of
models did not predict inertial dynamics. Unfortunately, writing the magnitude expected for phonon-induced solvation.
an appropriate equation of motion for polar solvation is more  B. Phonon-Induced Solvation. The roles of these three
difficult than for nonpolar solvation and must be left to future times becomes clearer in the limit where there is a large
work. separation between the phonon-propagation times and the
Although most of this paper is concerned with the normalized relaxation time of the moduli, i.et;, 7: < 7s. In the short time
response function, eq A23 also contains an expression for theor larges limit (szs > 1), the moduli approach the valugés)

total magnitude of the equilibrium Stokes shift — G, and”(s) — M. In this limit

Si() = 3Kg"Y () (46) X = sty (51)

m
y =ist, (52)

Using parameters from the systems to which this model has
been fit gives fractional changes in solute radii 6f@% for Equation 48 reduces to
both dimethyls-tetrazine im-butylbenzent ands-tetrazine in
propylene carbonaf®. Because this model assumes linear %o —~ (1 — f);‘(oph(s) (53)

coupling, it does not distinguish whether this change represents
an expansion or contraction. However, these systems also showvhere the normalized phonon susceptibility is
a narrowing of the fluorescence relative to the absorption

spectrum, which indicates a small nonlinear component to the _ph 1+ st
coupling. By the arguments of Nowak and Bernstein, the sign Xo (8= 1+ st + ¢ 2[(1 +ﬂ2)/(4ﬂ2)] (54)
of the nonlinearity indicates a contraction, rather than an ! !
expansior?® Li, Lee, and Bernstein used other methods to M. + (K. — K.)
estimate a very similar value of-5.0% for the change in the ﬂ2 =32 s ° (55)
effective radius of benzene in alkarfdsThese sizes changes M, — 3(Ks— K,,)
are small enough that the assumption of weak coupling should
be accurate. “I.G,
= (56)
IV. Phonon vs Structural Dynamics Ks+ 715G,
A. Time Scales. Before specializing to specific examples, Equations 53 and 54 can be analytically transformed back

we will show that the separation of solvation dynamics into (g the time domain. In the case where the solute force constant
phonon and structural components is a general prediction of s gmall Ky < Ko + (1/3)M., the response function is
this model. We wish to emphasize that two time scales for

solvation occur even when there is only one dissipative time Ry(t) = (1 — HRP(t) + f (57)
scale for the liquid itself. Thus, we assume that a single time
scale can characterize the relaxation of the moduli (see eq 9) h —t t ot
R(t) = exp{—)[co{—h) - B sm(—)] (58)
— 77 Tp ﬁrp ﬁrp
T,= - 47
G, )
_1+p
. Lo . Ty = T (59)
even though more complicated relaxation is important in many P 2ﬂ2

systems. We will also focus on the= 0 component, which

involves only longitudinal solvent motion, so it is clear thatthe The total response function along with the corresponding
existence of phonon and structural time scales is not related tosusceptibility is illustrated in Figure 2 for typical values of the
the existence of longitudinal and transverse components of aparameters. The response function shows a rapid decay
vector field. Analogous results far > 1, which also involve followed by weak, underdamped oscillations, settling to a

transverse solutions, are cited later. nonzero value at long time.
Begin with the exach = 0 solution from eq A18, In the case where the solute force constant is lafge; Ke
+ (1/3Mw, § is imaginary. Takings” = Im (3, the response
_ 3K(1 —1y) function is
Xo(S) = - , - (48)
3K+ 4a(9)(L — iy) — X(9) - (ﬂu + 1) ]2 ]
The time scalers associated withG(t) and K(t) can range 2 " =)y
from ~300 fs for low-viscosity liquids teo for a glass (eq 47). (ﬁ" - 1) exg——28"t ]. B> 1 (60)
In addition, there are two other times associated with this 2 @+
solution
The response still overshoots the long time asymptote but returns
7, =rJp/(K, + 4/3Gm)] v2 (49) to the asymptote in an overdamped fashion, without oscillations.
Qualitatively, the solution is in accord with the rapid
7, = r[p/G]"? (50) component seen in both experiment and simulation of nonpolar

solvation. The decay is subpicosecond in agreement with
These represent the time for longitudinal and transverse soundexperimeng’—32 The time scale of the decay is similar to the
waves, respectively, to travel a distance of one solute radius, ifinitial decay times found in simulations of nonpolar solva-
the moduli are at their short time values. Taking typical values tion.19:2324 Weak oscillations are predicted under some, but not
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—_
(]
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' ' & ] most easily seen in Figure 2b. The susceptibility should be
continuous across= 0, but the continuum prediction undergoes

a step discontinuity. This error also shows up in the response

function (Figure 2a) as a nonzero derivative at 0 and in the

. spectral density (Figure 3) as a too slow decay at high

: frequencies.

0 The correct limiting behavior of the response functiott is

0.5

0.0 N U T 1 L

t2
(b) | R)=1—+... 61
] O=1—- (61)

] The quadratic term represents the free streaming motion of the
molecules, without any influence from intermolecular forces,
which is sometimes referred to as ballistic dynamfc# simple
truncation of eq 61 diverges at long time. The simplest way to

A . . form a well-behaved response function is to complete eq 61 as
00 02 04 06 08 1.0 a Gaussiah

Time (ps)

101

Susceptibility (ps—1) Response Function
™
o

o

Figure 2. Short time, phonon approximation for nonpolar solvation —?
dynamics on the inertial time scale (solid curves): (a) the total response Rs(t) = ex — (62)
function, (b) the phonon-induced susceptibility. Ballistic dynamics 27,

(dotted curve) have the correct- 0 behavior but diverge at long times.

The Gaussian approximation (dot-dashed curves) converges at IongT

times but does not capture the damped oscillations or nonzero asymptote hese Evtvotf? ppr0>§_|mat|0ns ?jr_et_lllust_rr{?;[ed in Elgtl;]re 2a,tl_:) as a
predicted by the phonon approximation. The curves are calculated for contrast to the continuum prediction. € error in (hé continuum

a typical set of parameters,= 3 A, p =1 glen?, G, = 1.2 x 101 model is important for the first-100 fs. After 100 fs, the
dynicn?, Ko = (5/3)Ga, Ks = K. The ballistic time, = 58 fs, was continuum model is expected to give more reasonable results
chosen for illustrative purposes. than the short time approximations. It contains the collective

effects needed to describe oscillations and the halt at a nonzerc

all, conditions, in accord with simulatidfi:>*24 The decay is  value. A ballistic treatment does not represent these effects
independent of the solvent viscosity and persists even in a glassaccurately.
as is found experimentalf/-33 The origin of the error in the continuum model is directly

This model provides a simple physical picture for the origin linked to the lack of molecular structure in the solvent. In a
of these features. In the current approximation, dynamics resultreal solvent, the solutesolvent force acts directly on individual
from the propagation of waves in a purely elastic material. The solvent molecules, each of which has a finite mass. The initial
sudden increase in solute forcestat 0 launches an acoustic  acceleration of these molecules is finite and determined only
wavepacket, i.e., creates phonons. This process allows a partiaby the solute force and the mass of the molecules; changes in
expansion of the solute cavity and a partial decay of the solvation forces from other molecules are not felt at first. In the
response function. The time scale of the decay is determinedcontinuum model, there is no molecular structure, and therefore
by the time needed for the phonon wavepacket to propagateno minimum guantum of mass. The solute exerts a finite force
away from the solute, i.ez. (The corresponding transverse on a sharp boundary, and the first infinitesimal layer of solvent
time 7; only occurs inn = 1 solutions. See section IV.D.) The experiences an infinite acceleration. This unphysical effect
oscillations in the response function result from the back-reaction causes the incorrect behavior at early times.
of the tail of the oscillating wavepacket on the solute cavity. In From these observations, several comments can be made or
real solvents, the wavepacket damps quickly after leaving the classifying the time regions of solvation and the terminology
solute, but this is not important to the solvation process. The used to describe them. On long time scake8.b ps), relaxation
solvation decay does not represent a dissipative relaxation withinis dominated by reorganization of the solvent structure and is
the solvent, but rather a phonon-propagation time. The solvationaccurately described as structural or dissipative relaxation. This
does not result from dissipation of the solute energy directly process will be discussed in more detail in the next section.
into thermal energy but from a transfer of energy into a coherent The fast solvation component 600 fs) is due to the propaga-
solvent excitation. tion of phonons and is accurately described as phonon-induced

Further expansion of the cavity requires dissipative, viscous relaxation. The existence of this component is directly linked
flow and occurs on a longer time scale. The fraction of the to the inclusion of inertial terms in the equation of motion of
expansion accomplished by phonon creation is givehibyeq the solvent. Thus, itis also accurate to describe this relaxation
53. In the terminology of scattering experimentsis the as “inertial”. The inertial relaxation is a collective property of
Debye-Waller factor, i.e., the fraction of the scattering in the the solvent and, at a qualitative level, does not require the
quasielastic peak. It is determined by the strength of the inclusion of molecular structure in the solvent. The idea of
solvent-solute force constant relative to the shear modulus of “single-molecule” dynamics is incorrect for describing this entire
the solvent (eq 56). A stronger solutsolvent force constant  time region. It fails to explain the halt of the relaxation at a
is able to expand the solute cavity more effectively by elastic nonzero value and does not permit oscillation in the response.
processes, and a greater fraction of the solvation is due to Single-molecule or “ballistic” dynamics are appropriate terms
phonon creation. when eq 61 is a valid description. This time regime is confined

Although the continuum model is good at reproducing most to <100 fs and constitutes only a portion of the total inertial
of the general properties of the short time solvation dynamics, decay. It is only during this early time that the existence of
it is qualitatively in error at the very earliest times. This is molecular structure plays a primary role. At later times,
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0.8 — . . \ or ad-function component in the response function
= [ T~ A
o 7 S v _ t
2 o6 ) R Ro() = (1 — Do) + fRy(1) (64)
F K \ s |
a o ' . _ : . .
= 0.4r / \» e i ] It is a course-grained representation of the phonon-induced
% [ N 7 ! relaxation discussed in the previous section. The course-grainec
< 0.2/ ‘/\( | approximation contains information on the magnitude of the
o i PN ' phonon-induced relaxation, but no details of its time dependence.
- ) |
0.0 =00 " 500 800 100 500 The structural susceptibility
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Figure 3. Spectral density predicted by the phonon approximation Xo (S = 2 (65)
(solid curve). The spectral density does not have a simple relationship 1+ "[a(s)/K]

to the solvent density of states (dashed curve), which is simply the
Debye denSity of states. The viscoelastic model does not have theand the Corresponding structural response funcmﬁ(t)

correct high-frequency behavior, which is illustrated by the Gaussian yeqcribes dissipative solvation at long times due to relaxation
approximation (dot-dashed curve). See Figure 2 for parameters. of the moduli, i.e., due to relaxation of the original solvent

molecular structure needs to be included for quantitative Structure. It is unaffected by phonon propagation and is
accuracy, but the major qualitative effects can be understoodindependent of the time scales and zs. The structural
from a continuum point of view. relaxation time scale is directly related to the shear relaxation
Originally, the terms ballist and inertiat dynamics were time scale given bga(t). In turn, the shear relaxation time scale
both coined to describe free-streaming motion. In subsequentis directly related to the solvent viscosity (eq 47). As the
usage, they have both been used to refer to all fast dynamicstemperature is lowered, the structural solvation slows in
In light of our arguments that free-streaming motion applies to Proportion to the increasing viscosity and freezes in at the glass
On|y the earliest portion of the fast dynamiCS' we believe it is transition, where the ViSCOSity diVergeS. This is in accord with
useful to reserve the term ballistic for free-streaming motion the experimental observations of a long, viscosity-dependent

and to use inertial to describe all of the fast dynamics resulting Component in nonpolar solvatiGf.* It is interesting to note
from momentum effects in the solvent. that the compression modulus does not appear in the expressior

A final comment concerns the ut|||ty of the Spectra|_density for structural relaxation fon = 0, the relaxation is determined

representation as opposed to a time-domain representation. 1©nly by the shear relaxation function.

has become increasingly common to convert time-domain data Further discussion of structural relaxation requires a specific
to the spectral-density representation. In part, the hope is thatmodel forG(t). As a simple illustrative example, we introduce
the spectral density from a specific experiment corresponds the Maxwell modef® which posits exponential relaxation of
closely to the density of some type of intrinsic modes of the the shear modulus,

solvent, perhaps weighted by appropriate coupling factos.

Instantaneous normal modes are a popular candidate for the G(t) = Gme_tlrs (66)
intrinsic mode$’ Instantaneous normal modes are exact
harmonic modes of the system at short times. In the continuumand
model, we have the advantage of knowing the instantaneous
normal modes of the solvent exactly; they are the plane waves

of Debye model.

The Debye density of states is plotted against the spectral
density from the solvation experiment in Figure 3. Unfortu- For this model, eq 65 can be inverted analytically to give the
nately, there is not a simple relationship between the two. In course-grained solvation response function
particular, the Debye frequency is not simply related to the
phonon-induced solvation time. Although a coupling function —(1_ —t
could be defined so as to divide the spectral density into an Ro(® = (2 = No(® —Hexr{rsl(l - f)]
intrinsic density and a coupling, the coupling function would
be too complex for simple interpretation. In fact, the entire Figure 4 shows this function as well as the corresponding
viscoelastic model presented here can be regarded as the&pectral density. The structural solvation time is proportional
calculation needed to obtain this coupling function, and the to, but not equal to, the shear relaxation time. In the case of an
recognition of the existence of instantaneous normal modes doesexponential shear relaxation function, the solvation response is
not reduce the complexity of the calculation. also exponential. However, for nonexponential relaxation, the

C. Structural Relaxation. To complement the short time  shapes of5(t) and R(t) differ.26
approximation that led to phonon relaxation in the last section,  This model provides a simple physical interpretation of
this section looks at a time course-grained approximation, againstructural solvation. The initial expansion of the cavity by
assuming a time-scale separatianr; < 7. The exactsolution  phonon creation creates strain within the effectively elastic

Sts

“1+ st

as) =G (67)

(68)

(eq 48) can bg cpurse-grained in time with respeat tnd solvent. Structural relaxation represents the release of that strair
by taking the limitx,y — 0 through viscous flow. Unlike the phonon-induced relaxation,
3K structural relaxation is a directly dissipative transfer of energy
= s —_(1_ _ s into incoherent solvent energy. Although the dynamics of
S~ <=1+ (s 63 : . :
ZS 3K, + 4i(s) ( ) Xol() (63) structural relaxation are approximately independent of the

phonon-induced relaxation time, there is an essential interde-
In the time domain, the first, constant term in this expression pendence between the processes. Phonon-induced solvation se
translates into an instantaneous Stokes shift following excitation up the initial conditions for the structural relaxation, and as a
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Figure 5. Exact solution of the continuum model for the solvation
Figure 4. Time-course-grained, structural approximation to nonpolar response function with Maxwell relaxation (solid) compared to the
solvation dynamics (solid curves): (a) the total response function, (b) phonon-structure approximation (dashed) at several viscosities. The
the corresponding structural spectral density (Maxwell model, see Figure approximation becomes exact at high viscosity but develops modest
2 for parameters). errors at low viscosity. (See Figure 2 for parameters.)

result, the magnitude and rate of the structural solvation are response function is the sum of the phonon and structural
dependent on the magnitude of the phonon-induced solvation.|imiting response functions

D. Size vs Shape ChangesThe discussion above was
confined to size changes= 0. However, essentially the same
analysis holds for shape changes; 1. In thex,y — O limits,
corresponding to structural relaxation, egs 56, 64, and 65 still
hold if the shear impulse response functigs) is replaced by

Ro(® ~ (1 = HR (W) + Ry (t/z) (70)
This phononr-structure approximation has been used in previous
comparisons of this theory to experimental & Within
this approximation, the experimental response function can be
decomposed into two processes with independent time scales
and decay characteristics. The structural relaxation is unaffected
by the phonon timey,, and the phonon solvation is unaffected
and the high-frequency shear modulBs is replaced byG." by the shear relaxation times. If the weak temperature
= lin(). The only important change is that both the longitu- dependence ofG. is neglected, the phonon solvation is
dinal and shear impulse response functions are involved in theindependent of the solvent viscosity and temperature.
structural relaxation following a shape change, whereas only The accuracy of this approximation for the Maxwell model
the shear modulus in involved with a size change. However, is examined in Figures 5 and 6 in the time and frequency
both moduli relax on a similar time scale and show a similar domains, respectively. At large viscosities, the structural and
slowing at low temperatures and high viscosities, so the phonon time scales are well separated, and the error in eq 70 is
qualitative behavior of structural relaxation is the same, regard- negligible. The structural and phonon components are clearly
less of the value oh. separated in both the time and frequency domains. At a
In the s — o case, corresponding to phonon-induced moderate viscosity of 1 cP, the phonon and structural relaxation
solvation, the formulas analogous to eq 54 become increasinglytimes are less well separated. A plateau no longer exists in the
complex as increases. However, only two time constants are time domain, and the frequency domain peaks overlap. None-
involved. Both the longitudinal and shear wave propagation theless, the phonerstructure approximation remains accurate,

(n+ 2) (2n* + 1)i(s) — 2n(n — 1)a(s)
4 (n+ 1)+ TY#(9) + ni(s)

Fin(8) = () (69)

times, 7y and zs, are involved forn > 1, whereas onlyr is
involved in then = 0 case. However,; andzs differ by only
a factor of Go/Mw)Y2 The two times are similar in magnitude,

and the response can be decomposed into two components. Thi
approximation only breaks down at very low viscosities, where
the structural and phonon times become very close.

subpicosecond and independent of viscosity. Again the qualita- g An Exact Time-Scale Separation. Although the de-
tive features of phonon-induced solvation are the same regard-composition of the response into independent phonon and
less of the value oh. The model predicts that the separation  girctural components breaks down at low viscosity, the ability
of the solvation dynamics into distinct phonon and structural 4 decompose the total response into two components is more
components occurs for changes in shape as well as for changegypst. In Figure 6, a discernable shoulder exists even at 0.15
In size. cP. Despite the small separation between phonon-induced anc
structural times and the significant error in the phonetiucture
approximation, it still appears that the spectral density should
A. Phonon—Structure Approximation. Examining the be described as two overlapping peaks. In fact, it can be shown
short and long time approximations in eqs 53 and 63 im- that decomposition into two peaks is still correct, even without
mediately suggests a simple approximation, in which the full a separation of time scales.

V. Separability of Phonon and Structural Dynamics
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Figure 6. Exact solution of the continuum model for the solvation
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Figure 7. Two decompositions of the exact response function (solid)

spectral density with Maxwell relaxation (solid) compared to the at several viscosities: the exact decomposition into fast and slow

phonon-structure approximation#) at several viscosities. The cor-  components (dashed) and the approximate decomposition into phonon
responding phonon (dash-dotted) and structural (dashed) componentsand structural components (dotted). At high viscosity, the two
are also shown. The approximation becomes exact at high viscosity decompositions become indistinguishable. For clarity, the amplitude
but develops modest errors at low viscosity. (See Figure 2 for of the structural and slow componeifitsas been added to the phonon
parameters.) and fast curves.

Within the Maxwell model, the response can be exactly Examples of the decomposition of the total response into fast
decomposed into fast and slow components, regardless of the2nd slow components are shown in the time domain in Figure

relative sizes of the phonon and structural times
7o(8) = (1 = %0 (St 7ol + T (ST Tpf7d (71)

J_Cofa(s":ph; Tph/‘CS) = Xoph(Stph) +
2 1
T St 1-"/rst
sty Zthr( fph) [ 3 - ph =
Ts ll = Sty — 131 (STyh)
BY(st) — Y, rA(st)st
AZ(SL'S) 1/2( S) 31( S) ph 2
1 — B (ststyn + /3rA(ST)(STHn)

(72)

ZOSl(Srs; tph) = ZOSt(SFs) +

(1 — f)(rr—p“)zsrs[z + %srs(l — A¥s))| (73)

l-st
A(st) = ————— (74)
(1—1f)— sz
1—sr
B(sty) = TS (75)
—_— SZ'S
;
K, +YG,
r=——70r— (76)
K+ .G

7 and in the frequency domain in Figure 8. Each component
still has its own time scale. The decayRyf? is confined near

7on and the decay dRg®' is confined nears, or in the frequency
domain the fast component is peaked neapnldnd the slow
component is peaked nearrd/

For comparison to this exact decomposition, the approximate
phonon-structure decomposition is also shown in Figures 7 and
8. Equations 72 and 73 show that the fast and slow components
contain correction terms to the phonon and structure approxima-
tions. These terms vanish at high viscosity, where there is a
large time-scale separatiofyy/ts < 1. This result emphasizes
the fact that the phonorstructure approximation is the con-
sequence of a time-scale separation, rather than of the smallnes
of a coupling term in the Hamiltonian.

Although a time-scale separation is required for the math-
ematical simplification of the phonerstructure approximation
and for the interpretation of the two components as purely
phonon and purely structural processes, a time-scale separatiol
is not needed for the full response function to be exactly
decomposable into a sum of components. The essential
difference between the two decompositions is that in the
approximate phononstructure decomposition, the two com-
ponents have independent shapes, whereas in the exaet fast
slow decomposition, the time scale of one component affects
the details of the shape of the other component. When external
conditions such as the temperature or viscosity change, the
phonon-structure approximation predicts that the components
will simply shift in time. The exact result predicts that the two
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If the spectroscopic approach is adopted, the essential
problems are decomposing experimental results into the correct
number of peaks and assigning each of the corresponding
coordinates to specific molecular motions. Because the dynam-
ics of each mode are assumed to be simple, the experimentally
observable spectral density should be a direct representation of
a complete set of coordinates or modes of the liquid filtered by
a set of coupling constants, much as an infrared spectrum is a
reflection of the complete set of molecular vibrations weighted
by infrared cross sections. In the instantaneous normal mode
approach, the description of liquids by such a set of modes has
been proven to be accurate for sufficiently short time inter¥als.
However, arguments have also been made that such a set cann
be accurate for all timé% and thus will not be able to deal
with the problem of multiple time scales.

The viscoelastic continuum model of solvation presented here
is a specific example demonstrating that the existence of multiple
time scales does not require a spectroscopic explanation. It is
an example of what | will call a “dynamical” approach. Because
the continuum model is so simple, it is easy to see that there is
not an undiscovered coordinate transformation that will bring
it into correspondence with the spectroscopic approach.

In the continuum model of nonpolar solvation, the existence
of two peaks in the spectral density is due to the inherently
complex dynamics of a single coordinate, not due to two
coordinates with simple dynamics. The cavity radius is the only
]oglo (7/Cm—1) collective solvent coordinate directly coupled to the solute. In

Figure 8. Two decompositions of the exact spectral density (solid) at the n = 0 case, only longitudinal motion is involved, so the
several viscosities: the exact decomposition into fast, slow ComponentsIongltudlnal—transverse dichotomy is not responsible for the

(dashed), and the approximate decomposition into phonon and structurafmultiple time scales. For the Maxwell model, only a single
components (dotted). At high viscosity, the two decompositions become relaxation time scale is assumed, so there is not a hidden
indistinguishable. assumption of multiple time scales in the input functions.
components will interact as their time scales become compa-Although the Hamiltonian for the solvent is approximately
rable, and simply scaling high-viscosity results in time will not Separable into an infinite set of zero-order modes for short time

Spectral Density

be sufficient to predict the low-viscosity results. intervals, these modes do not have the direct relationship to the
solvation spectral density that the spectroscopic approach seeks

VI. Spectroscopic vs Dynamical Approaches to Multiple In particular, the spectrum of short-time solvent eigenvalues

Time Scales by itself does not give any indication that two distinct time scales

. . . will be found in the model.
The existence of phonon and structural time scales in nonpolar . . .
Within the current model of nonpolar solvation, the existence

solvation dynamics is a specific example of the occurrence of . i ) k .
multiple time scales in liquid dynamics, a theme that is currently ©f multiple time scales is due to inherently complex dynamics
along a single coordinate. The two components of the

prominent in a variety of contexts? One method for analyzing . . .
these multiple time scales is what I will call the “spectroscopic” €XPerimental response function are due to two different stages
of relaxation: in this case, coherent phonon emission, followed

approach. This method has the greatest intuitive appeal when-" =47t ; ) i
results are expressed as spectral densities and multiple timd?Y dissipative relaxation of the stresses created in the first stage.
scales appear as multiple peaks in the frequency domain. In The interpretation given above in terms of distinct phonon
analogy with the analysis of optical spectra, each peak is and structural relaxation processes is dependent on an assumg
assumed to be associated with a different coordinate. Thesetion of a separation of time scales. However, the ability to
coordinates are assumed to be independent in the sense th&l€écompose the spectral density into separate components is nc
they allow a zeroth-order Hamiltonian for the system to be dependent on this assumption. The exact solution of the
separated into a sum of independent terms. Higher order termscontinuum model decomposes into two components, even when
in the Hamiltonian cause damping of the coordinates and the peaks in the spectral density are heavily overlapped. The
broadening of the peaks in the spectral density. In this approach,components are directly interrelated in the sense that the
the essential approximation is that these higher order couplingsmagnitude and rate of the slower component depend on the
are weak enough that the dynamics of each coordinate remaingconditions established by the faster component and in that
relatively simple. changing the time scale of one component can alter the details
The primary observable consequence of these assumption®f the peak shape of the other component. Thus the fact that a
is that the total spectral density or response function can be single experimental spectral density is well represented as a surr
decomposed into the sum of two or more components. In Of components is not sufficient to prove that the underlying
addition, the components are completely independent. For Hamiltonian separates into a sum of components or that the
example, their responses to changes in experimental conditionsfwo components represent fully independent processes.
such as temperature or viscosity, are not directly related. One approach to distinguishing between spectroscopic and
Multimode Brownian oscillator models are currently popular dynamic explanations has been illustrated in Figure 5. At high
means of implementing this approath. viscosities and low temperatures, where a good time-scale
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separation exists, suitable high-frequency (microscopic peak)and a slower viscosity-dependent structural relaxation were
and low-frequency d peak) limiting forms can be fit to the  predicted. In this model, the essential difference between these
well-separated peaks. In the spectroscopic approach, thesewo processes is that the structural relaxation is strictly dissipa-
forms can be simply scaled in frequency to generate results attive, whereas the inertial component is a coherent transfer of
low viscosity. In Figure 6, this procedure is represented by energy to well-defined solvent excitations (which decay dissi-
the phonor-structure approximation. In the dynamic approach, patively at a later time).

this procedure only generates an approximation to the true The success of a continuum model in describing short time
results, and deviations will be seen as the time-scale separatiordynamics should not be surprising. A good description of the
is decreased. This procedure has been applied frequently tovelocity autocorrelation function can be obtained from a
neutron and light scattering and to dielectric relaxation, with continuum model even in the 100 fs regitf¥’ As in the

the result that deviations often are seen at intermediate frequen-continuum model of solvation, errors in the limiting behavior
cies! In spectroscopic terminology this represents a new are found at the very earliest times, but these comprise only a
componentps-relaxation, but from a dynamical point of view,  small fraction of the total correlation function. The fundamental
it represents an essential interaction between the early and latghysics at short times involves the propagation of sound waves,
stages of a complex relaxation. and the time scales are set by sound propagation times. To 3

Although this paper has focused on the simplest case of first approximation, these times may be obtained in either a
single-exponential structural relaxation, nonexponential relax- molecular description from molecular masses and intermolecular
ation is common, especially at high viscosity. The general potentials or in a continuum description from the density and
comments made here can be applied to explaining multiple moduli®*
structural time scales. In a spectroscopic approach, the non- On the basis of the results of this model, several general
exponential decay is analyzed as a superposition of separat&eomments were made about liquid dynamics. First, the idea of
exponential decays. In a dynamical approach, it is regarded asballistic or single-molecule dynamics was distinguished from
an intrinsic property of a complex relaxation. Mode-coupling inertial dynamics. Many important features of inertial dynamics
theory is such a dynamical theory for the form of structural are captured in a continuum treatment, which lacks any
relaxation®®-¢1 Hole-burning experiments on nonpolar solva- molecular structure, but are not well represented by ballistic
tion have shown that mode-coupling theory is in agreement with models. Conversely, a continuum picture does not treat the very
the viscosity dependent changes in the form of the structural early ballistic dynamics correctly. Inertial dynamics encompass
relaxation3334 Recent work by Bhattacharyya and Bagchi has a longer time regime than the short-time ballistic approximation
shown how multiple time scales arise in the mode-coupling does, and many of the important features of inertial dynamics
treatment of the friction experienced by a diffusing partf@e. are fundamentally collective.

Another approach to distinguishing between spectroscopic and Second, the results in this paper were presented in both the
dynamical approaches is the use of high-order spectrosctpies. time domain and as spectral densities. Because the underlying
In the context of solvation, data on the hole-burning widths modes of the continuum model are known exactly, it is easy to
provides a higher order measurement related to the peak shiftssee that there is no simple relationship between the spectral
calculated in this paper. Further experimental work is needed density and intrinsic modes of the liquid. At least in the case
in this area. In nonresonant four- and six-wave mixing of nonpolar solvation, the spectral-density representation does
experiments, Steffen and Duppen have noted difficulties in not appear to have any advantage over the time-domain
reconciling the multiple time scales observed with Brownian representation.
oscillator model$3 Further theoretical work is needed to Lastly, | contrasted spectroscopic and dynamical approaches
determine if such results are indicative of a dynamical origin to explaining the existence of multiple time scales in liquid

of the observed time scales. dynamics. Despite major conceptual differences in these two
approaches, the differences in predicted experimental results are
VII. Summary subtle. In particular, both approaches predict that the observable

response function or spectral density is decomposable into two
components. Clearly, the ability to decompose experimental
data into a sum of multiple components does not, by itself,

demonstrate the existence of multiple solvation coordinates.
Experiments specifically directed toward distinguishing these

two approaches are needed.

This paper has presented a continuum model for nonpolar
solvation, which is an analog of continuum models of polar
solvation®~17 It shows that the dynamics of nonpolar solvation
depend on the relaxation of mechanical moduli in much the
same way that the dynamics of polar solvation depend on

gherlrizttrfq (;gg)i(? tel?(nécﬁes('j ItSO t;‘:ngﬁts f? omtagg?éit?gxségg'r the Of course, this model by itself cannot prove the validity of
P these ideas in real liquids. However, this model does provide

dependence to the moduli and nonspherical shapes to the SOIUt% specific example of an alternative to several currently popular
cavity? Generalized hydrodynami®&sprovides a route for P P Y pop

systematically improving the viscoelastic model and making the metho_ds Qf analyzing Ilqwd dynamics. | h(_)pe Itraises questions
. . that will stimulate and direct further theoretical and experimental
connection to molecularly based theod&=> Although lacking efforts to clarify the best approaches to understanding the
these refinements, the current model has the advantage of havin% namics of liquids and othe??:om lex svstems 9
compact, analytical solutions, which simplifies the discussion y q P y '
of the general trends and features of nonpolar solvation. In
addition, the accuracy of the model is sufficient to interpret
experiment®32and computer simulatiorf.

Unlike previous continuum models of solvation, this model
specifically addresses the issue of inertial dynamics. A full
equation of motion, including both inertial terms and mechanical
susceptibilities, was derived to describe the liquid dynamics. Equation 31 is a standard vector wave equation, and with
As a result, both a rapid viscosity-independent inertial process spherical boundary conditions, it can be solved analytically by
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standard method®. The first step is to expand the coupling in  in terms of the unitless variables
spherical harmonics

x = isr [pla(s)] M2 (A10)
CO,9) = c,"™X."(0, Al
09 =2 X (0) (A1) y = isr [o/7(9)] "2 (AL1)
We use complex spherical harmonics witfunction normal- z=isr[p/K]" (Al12)
ization%6 (Thus, for a purely spherical expansiog,™ = - ]
\/Irér/r.) and the auxiliary functions
With the expansion of the coupling in multipole moments, h
the solvent displacement also decomposes into multipole B, (xy) = (iz+§)hn'(y) + ’1 _ M]ﬂ (A13)
moments Z X y
h
su(r9 =y ¢,"ou,"r.9) (A2) DA(y) = hy'() — % (A14)
mn
h
where each componeldii,™(r,s) is a solution of eqs 3134 E.(X) = %hn'(x) — (3 + §)ﬂ (A15)
with X,™(6,¢) replacingC(6,¢) in eq 34. Each component of X 7l X
the displacement is further expanded in vector spherical h ()
i X
harmonics H.() =h'(x) + [6&2) — (N +n— 1)]— (A16
n n

X

00, "(r,9)s/re = A() L,"(r) + Ay'(9 M,"(r) + As implied by the notation, the amplitudes of the vector
AN”(S) Nnm(r) (A3) harmonics are independentmf In the case of a size change

(n = 0), the solution is completely longitudinal. However, in

the case of a shape change £ 1), both longitudinal and

transverse solvent motions are excited.

The equations above give a complete solution for the time-

ependent solvent displacement field throughout space. Cal-

Because only outgoing waves are anticipated, vector spherical
harmonics of the third kind as defined by Morse and Feshbach
are used® They are defined in terms of the Hankel functions d

(1) culating the Stokes shift only requires the radial component at
the cavity boundary, which is given by
an(r) = Vrl[hn(lh;l) Xnm(ea(p)] (A4) —m Me m
(00, (re.0.9:9)], = 1Cy 7n(S) X (0.90)s - (AL7)
h.(F
N,"(r) = n(n + 1)& X."(0,¢)f + where the important time/frequency dependence has been
It isolated into the function
= 1d., .
[rtvrtxnm(er(ﬁ)]F_ E[rthn(rt)] (AS) 3K U (X'y)
e (9 = -
. | [3K, — 20 = 1)(n + 2EE]U,(xy) — AEXV,(xY)
with the scaled distances (A18)
h{:ﬁ”ﬁ A U0 = Pral® Pris) — P Poy) — [0+ 1)+
t —
e (C12)IPy(%) Prsa(y) + NOCT2)P,0) Po(y) (A19)
_ 1/2
F = v(i )"] r (A7) Vi(%y) = Pria(X) Po(y) + n(n + 1)P(X) Prya(y) —

[(6¢12) + (N + 1)(n — 1Y]P(X) P,(y) (A20)

The L,™(r) are longitudinal solutions, and thH,™(r) are " @2n—j) j
transverse solutions. THd,™(r) are torsional waves that are P (2= I (E) (A21)
never excited by a quasi-spherical solute with slip boundary n ];Zn—j(n — ! i
conditions, i.e. Ay"(s) = 0. W

With this basis set, it is a tedious, but straightforward, |nserting eqs A17 and A2 into eq 38 shows that the total Stokes
calculation to find the amplitudes in eq A3 that satisfy the shift is the sum of Stokes shifts attributable to each of the

boundary conditions in eqs 384. The results are multipole moments of the coupling
An 32H,(x) - =Y S (A22)
= n
B(xy) Hy(X) — n(n + 1)Dy(y) E(x) , o
Each multipole component of the Stokes shift is simply related
0: n=0 to xn(t)
A" =1{ Dn(y) A9 ) gt
A=\ 2 g s (A9) SO =3Ks AT @M L) de (A23)
m

Ho) -
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