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A continuum model of nonpolar solvation is presented. Coupling of the solute to the solvent is assumed to
occur through a change in the solute’s size or shape upon electronic excitation. Both spherical and nonspherical
changes in the solute are treated. The time-dependent shear and longitudinal moduli of the solvent determine
the solvation response function. Unlike prior continuummodels of solvation, both a rapid, viscosity-independent
inertial component and a slower, viscosity-dependent diffusive component emerge from the model, even
when only one time scale is assumed in the moduli. The origin of multiple time scales in this model, which
has a single solvent coordinate with complex dynamics, is contrasted with treatments such as the multimode
Brownian oscillator models, which postulate multiple solvent coordinates, each with simple dynamics.

I. Introduction

Relaxation on multiple time scales has long been recognized
as a key feature in the dynamics of high-viscosity liquids.1

However, early work on dynamics in low-viscosity liquids often
focused on a single relaxation time. Continuum models are
found to be a surprisingly successful first approximation to these
dynamics.2 More recently, both improved experiments and
computer simulation have shown that a second “inertial” time
scale exists in addition to the previously recognized “diffusive”
time scale.3-7 This paper shows that the existence of these two
time scales and their most prominent experimental features can
be predicted from a continuum model, at least for nonpolar
solvation. Although continuummodels have obvious limitations
in describing real systems with molecular structure, their
simplicity is a major advantage in discussing the qualitative
physics underlying the model. This paper contrasts the “dy-
namical” origin of multiple time scales embodied in the
continuum model with other “spectroscopic” explanations.
The general features of liquid dynamics are mirrored in

electronic state solvation. When a solute molecule undergoes
a change in electronic structure, either due to progress along a
reaction coordinate or due to a change in electronic state, the
surrounding solvent undergoes a time-dependent reorganization
to optimize the solvation of the new electronic structure.
Solvation mechanisms are broadly classified as “polar” when
solvent molecule reorientation is predominant, as occurs with
dipole-dipole interactions with a polar solvent,8-17 and “non-
polar” when solvent molecule center-of-mass motion is
predominant.18-26

In the case of nonpolar solvation, transient hole-burning
experiments have established the basic time scales involved.26-34

At high viscosity, a rapid, subpicosecond relaxation is clearly
separated from a slower relaxation. The rapid component is
approximately viscosity independent. It remains subpicosecond
in the high-viscosity supercooled liquid and even persists in
the glassy solid. In the solid, this component results from
interactions with the phonons of the environment. In the liquid,

experiments have shown that the rapid component is the high-
temperature extrapolation of the phonon-induced relaxation in
the solid. Because of this specific experimental assignment,
we refer to the rapid component of nonpolar solvation as the
“phonon-induced” component, rather than using the less specific
term, “inertial”. Computer simulation has also shown that this
component can include weak oscillations,23 although current
experiments have not been able to test this prediction.
In contrast to the phonon-induced component, the slower

component’s relaxation time is directly proportional to the
solvent viscosity. In the glass, this component does not relax
at all but is responsible for static inhomogeneous broadening
of electronic transitions. We have assigned this component to
reorganization of the structure that supported the phonon-like
motion during the earlier phonon-induced relaxation. Because
of this assignment, we have used the specific term “structural”
relaxation, instead of the more general description “diffusive”
relaxation.
In addition to these experimental results, there have been

several theoretical studies of nonpolar solvation dynamics.
Walsh and Loring looked at the first stage of solvation and its
effect on photon echo experiments with a ballistic treatment.18

Ladanyi and Stratt have looked at the early portion of solvation
using an instantaneous normal mode analysis.19 Larsen et al.
have explored connections between nonpolar solvation and
vibrational relaxation using the same method.20 Kalbfleisch,
Ziegler, and Keyes used a similar approach to look at solvation
in high-pressure gasses.21 Evans also looked at the first steps
of solvation using kinetic theory.22 Stephens, Saven and Skinner
have used approximations based on dropping certain high-order
correlation effects to look at nonpolar solvation on a complete
range of time scales.23,24 Bagchi has examined the correlation
function of the total ground-state potential energy, which is
closely related to the solvation correlation function, using density
functional theory.25

This paper presents a continuummodel for nonpolar solvation.
A change in the solute’s effective size or shape upon electronic
excitation is assumed to be the primary interaction driving
nonpolar solvation. Following excitation, the solvent must move
to allow the solute cavity to expand. This movement is modeled
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by treating the solvent as a viscoelastic continuum. The
solvation reponse function is then calculated from the time- or
frequency-dependent mechanical moduli of the solvent. This
model is an analog of continuum models of polar solvation,
which predict solvation dynamics from the frequency-dependent
dielectric constant.8-17

Although microscopic theories clearly deal with the effects
of liquid structure more realistically than continuum models,
there are several important advantages to a continuum model
of solvation. Despite the neglect of liquid structure, continuum
models are frequently found to capture a surprising amount of
the essential physics involved and have been very influential
in the development of more sophisticated theories of liquid
dynamics.35 Continuum models are generally regarded as
providing an excellent approximation to processes such as
molecular reorientation2 and polar solvation8,9 on times longer
than a picosecond. Zwanzig and Bixton36 followed by Metiu,
Oxtaby, and Freed37 showed that a viscoelastic continuummodel
of the velocity autocorrelation function works well, even on
the 100 fs time scale. Because continuum models require
relatively simple input data, they are often easier to compare to
experimental data than microscopic theories. The continuum
model of solvation presented here has already been compared
to experimental data over a broad range of temperature in
supercooled liquids.26,32,33 The simplicity of continuum models
also gives a readily apparent conceptual picture of the dynamics
involved.
Despite the early success of continuum models, even at very

short times,36,37 there is currently much discussion in the
literature characterizing inertial dynamics as fundamentally
“single molecule” or at least intimately connected to molecular
structure. This paper shows that although molecular structure
is important for describing the details of inertial dynamics, the
basic features are contained within a continuum picture.
In part, this discussion arises because earlier continuum

models of solvation did not predict the existence of inertial
dynamics. The model of nonpolar solvation presented here
shows that this limitation is not fundamental to a continuum
treatment but is due to the details of implementing the model.
In the current model, a full equation of motion is written for
the solvent displacement as a function of time and position.
The time dependence of the displacement comes both from the
time/frequency dependence of the moduli and from inertial terms
in the equation of motion. Approximations could be used to
relate the experimental observable directly to the solvent moduli.
These approximations avoid the complexities of a full equation
of motion, but only at the expense of losing the inertial effects.
The relative simplicity of this model is exploited to make

three major points concerning the physical origin of inertial and
diffusive relaxation. First, the existence of an inertial component
in solvation dynamics is not essentially connected with molec-
ular structure or single molecule motion. Structural effects are
preeminent only in an even shorter “ballistic” time regime.
Second, this model attributes the existence of two times scales
to two stages of relaxation, first by coherent phonon emission
and then by viscous flow to relieve shear stress, occurring along
a single solvent coordinate, the cavity radius. This explanation
contrasts with approaches such as multimode Brownian oscil-
lator models,38 which assign different time scales to distinct
solvent coordinates. Third, the time-dependent results of the
model are transformed to frequency-domain spectral densities
to test the idea that a spectral representation gives an accurate
picture of a set of underlying solvent modes. This model

provides an example in which the observed spectral density is
not closely related to such a set of modes.
The discussion of these points is predicated on the assumption

that the viscoelastic model is a good first-order description of
the important physical porcesses involved, an assumption that
is supported by several other studies. This model has already
been used to quantitatively fit temperature-dependent solvation
data in two different systems.26,32 Oscillations in the response
function, which have been seen in computer simulation under
some conditions,23 are explained by this model. Computer
simulations of electron solvation have also identified the
solvent’s response to changes in the size and shape of the solute
as major components of the solvation process,39-41 and this
model gives quantitative fits to those simulations.42

Although certain formulas resulting from this model have
been used in analyzing experimental data,26,32,33the details of
its derivation have not been published previously. The effects
of changes in shape, in addition to changes in size, are
incorporated into the model presented here. These results have
not appeared before.
The detailed description of the model and the development

of the equations implementing it are contained in section II.
The solution of these equations in outlined in the Appendix,
and the general properties of the solutions are discussed in
section III. Section IV discusses how phonon-induced and
structural relaxations are obtained as long- and short-time limits
of the full solution. Section V examines the validity of the
approximate decomposition of the complete solution into the
sum of a phonon-induced and a structural component. An exact
decomposition of the solution is presented to highlight the
important distinction between decomposing a response function
into two components and having those two components behave
independently as conditions change. A discussion of the
differences between the current “dynamical” approach to
explaining the multiple time scales in liquids and the “spectro-
scopic” approach used in other models is contained in section
VI. A final summary is presented in section VII.

II. Definition of the Model

A. Overview. The solute is modeled as a nearly spherical
cavity within a viscoelastic continuum representing the solvent
(Figure 1). The boundary between solute and solvent is sharp
and acted on by two sets of forces: one from the solvent tending
to collapse the cavity and one from the solute resisting the
collapse. Beforet ) 0, the solute is in the ground electronic
state, and the cavity radius equilibrates at a certain size. Att
) 0, the solute is transferred to the excited electronic state,
instantaneously increasing (or decreasing) the solute forces on
the cavity boundary. To regain equilibrium, the cavity must
expand (contract). This expansion (contraction) lowers the
system energy and causes a solvation-induced Stokes shift.
The solute forces include the direct forces from the solvent-

solute intermolecular potential and the free energy of organizing
the solvent molecules around the solute cavity (i.e., the “surface
tension”). The change in the solute force att ) 0 is caused by
the difference in the solvent-solute potential between the
ground and excited states. Many different specific mechanisms
may be responsible for this difference: changes in repulsive
forces generated by the overlap of the molecular cores, changes
in internal bond lengths, changes in dispersion (polarizability-
polarizability) interactions, changes in dipole-polarizability
interactions, and so on. All of these “nonpolar” mechanisms
produce forces that are strongly concentrated in the first layer
of solvent and that act primarily between the centers-of-mass
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of the solute and solvent. They are all treated equivalently
within the model as a change in the radial force on a sharp
cavity boundary. The model does not incorporate “polar”
solvation mechanisms such as dipole-dipole8,10 or dipole-
quadrupole interactions.43 These interactions are inherently
long-range and produce primarily torques rather than center-
of-mass forces.
The forces on the cavity boundary from the solvent include

the equilibrium external pressure and the nonequilibrium forces
generated in response to changes in the solute. The core of
this model is calculating the nonequilibrium forces from the
equation of motion for a viscoelastic continuum. From these
forces, the time dependence of the cavity radius is calculated
and then translated into the time dependence of the electronic
transition energy.
B. Definition of Viscoelastic Quantities. The central

quantities of interest in this model are the mechanical stress
and strain tensors.44,45 The stress tensorσ is defined as the
forceF per unit areaA

The tensor notation incorporates both compressive forces acting
perpendicular to the area and shear forces acting parallel to the
area. In an isotropic material, only two tensor quantities are
independent: the scalar isotropic pressure

and the second-rank shear stress tensor

whereI is the unit matrix.
The movement of the solvent in response to these forces is

given by the displacementu relative to a reference state. The

strain tensor is defined as the symmetric spatial derivative of
the displacement

In isotropic material, the strain can also be decomposed into a
scalar, compressive strain

and a second-rank shear strain

Standard mechanics posits a linear relationship between stress
and strain, with moduli as the proportionality constants. In
viscoelastic treatments, the magnitude of the moduli are allowed
to vary with the duration of the stain.44,45 Thus for the shear
components of stress and strain

whereµ(t) is the impulse shear response function and the factor
of 2 is conventional. The time-dependent shear modulus is
defined as the time-dependent force needed to maintain a step-
function shear displacement

At short times, a liquid will resist a shear displacement with a
modulusG(t)0) ) G∞. With time, the resistance drops, and
the modulus decays to zero, i.e.,G(t)∞) ) 0. The viscosity
observed at long times is

The compression impulse response functionκ(t) is similarly
defined by

The time-dependent compression modulus

has a nonzero value both at short times,K(t)0) ) K∞, and at
long times,K(t)∞) ) K0.
Although the shear and compression moduli are the easiest

to define, the model solutions are often most easily expressed
in terms of the shear and longitudinal moduli. The longitudinal
functions are defined by

and

Figure 1. Schematic illustration of the boundary conditions of the
model. The solute occupies the central cavity (heavy line). A viscoelastic
solvent (lined region) fills the space between the solute and the external
boundary. Fort < 0, the balance of forces on the cavity boundary
determines the cavity radius at equilibrium in the ground state. Att )
0, the solute jumps to its excited state, and the outward pressure from
the solute changes. Ast f ∞, a new equilibrium cavity size and shape
are established. See the text for the definition of the parameters.

F ) σA (1)

p) -1/3 Tr σ (2)

σ(2) ) σ + pI (3)

εij ) 1
2(∂ui∂xj +

∂uj
∂xi) (4)

ε
(0) ) Tr ε (5)

ε
(2) ) ε - 1/3ε

(0) I (6)

σ(2)(t) )∫-∞

t
2µ(t-t′) ε(2)(t′) dt′ (7)

G(t) )∫0tµ(t′) dt′ (8)

η )∫0∞G(t) dt (9)

p(t) )∫-∞

t
κ(t-t′) ε(0)(t′) dt′ (10)

K(t) )∫0tκ(t′) dt′ (11)

ν(t) ) κ(t) + 4/3µ(t) (12)

M(t) ) K(t) + 4/3G(t) (13)
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With these definitions, the viscoelastic equation of motion
is44,45

whereF is the density. The term on the left represents inertial
effects associated with the momentum of each volume element
and is essential to describing wavelike motions in the solvent.
This term contributes a time dependence to the solutions that
is not included in the time dependence of the moduli themselves.
C. Boundary Conditions. The specific details of the model

are contained in the boundary conditions (Figure 1). In its
ground electronic state, the solute exerts a radial force per unit
areaps,g(rb) on the interior boundary. The magnitude of this
force depends explicitly on the size of the cavityrb. Setting
this force equal to the solvent force at the boundary gives the
condition

We also adopt slip boundary conditions; i.e., the solute exerts
no tangential forces on the boundary

The outer boundary of the solvent atrex (Figure 1) experiences
a constant external pressurepex that acts radially. The radius
of the outer boundary is taken to infinity, giving the boundary
conditions

and

Before t ) 0, the system is in equilibrium with the ground
state of the solute. This condition occurs when the solute
pressure equals the external pressure

This equation defines the equilibrium cavity size in the ground
state rc,g. Under these conditions, the displacement of the
solvent is

measured relative to the system under zero pressure. The effect
of the external pressure is removed by defining deviations from
the equilibrium displacement and strain

The initial conditions for these variables are simple:δu(r ,0)
) 0 andδε(r ,0) ) 0.

For small displacements from the equilibrium cavity size, the
solute force is assumed to vary linearly with the displacement
of the cavity boundary

The force constantKs is defined to have the units of a modulus
and can be interpreted as the apparent compressibility of the
solute cavity. In the excited state, the force constant is assumed
to remain the same, but the equilibrium cavity size changes to
rc,e (Figure 1)

We define a normalized solvent-solute coupling constant

To model changes in shape of the excited state, the coupling
constant is allowed to be angle dependent. In the limit of weak
coupling,C(θ,æ) , 1, the deviations from a sphere will be
small. As an approximation, the cavity will be treated as quasi-
spherical in all other respects. With weak coupling, the cavity
radii in the ground and excited states can be taken to be equal,
rc,e≈ rc,g≈ rc, whenever they do not occur as differences. To
write eqs 23 and 24 in terms of the solvent displacement, note
that δur(rb) ) rb - rc,g. The force laws in the ground and
excited states become

These equations define a linear coupling between the solute
electronic state and the solvent.

The change in solute force att ) 0 is incorporated as a time-
dependent extension of the boundary condition in eq 15

Laplace transforms of time-dependent quantities

are now introduced. In Laplace space, the equation of motion
(eq 14) becomes

F
∂
2u(t)

∂t2
)∫-∞

∞
{ν(t-t′)∇[∇‚u(t′)] - µ(t-t′)∇ ×

[∇ × u(t′)]} dt′ (14)

ps,g(rb) ) -∫-∞

t
{2µ(t-t′) εrr(rb,t′) + [ν(t-t′) -

2µ(t-t′)] Tr ε(rb,t′)} dt′ (15)

εrφ(rb,t) ) εrθ(rb,t) ) 0 (16)

pex ) -∫-∞

t
{2µ(t-t′) εrr(∞,t′) + [ν(t-t′) -

2µ(t-t′)] Tr ε(∞,t′)} dt′ (17)

εrφ(∞,t) ) εrθ(∞,t) ) 0 (18)

ps,g(rc,g) ) pex (19)

ueq(r ) ) -
pex
3K0

r , |r | > rc,g (20)

δu(r ,t) ) u(r ,t) +
pexr

3K0
r̂ (21)

δε(r ,t) ) ε(r ,t) +
pex
3K0

I (22)

ps,g(rb) ) pex - 3(Ks/rc,g)(rb - rc,g) (23)

ps,e(rb) ) pex - 3(Ks/rc,g)(rb - rc,e) (24)

C(θ,æ) )
rc,e- rc,g

rc,g
(25)

ps,g(rc) ) pex - 3(Ks/rc)δur(rc) (26)

ps,e(rc) ) ps,g(rc) + 3KsC(θ,æ) (27)

pex - 3Ks[δur(rc,t)/rc] + 3KsC(θ,æ) H(t) )

-∫-∞

t
{2µ(t-t′)[εrr(rc,t) - Tr ε(rc,t)] +

ν(t-t′) Tr ε(rc,t)} dt′ (28)

H(t) ) {0, t < 0
1, t > 0

(29)

fh(s) )∫0∞e-st f(t) dt (30)

δuj(r ,s) ) [νj(s)

Fs2 ]∇[∇‚δuj(r ,s)] - [µj(s)

Fs2 ]∇ × [∇ × δuj(r ,s)]

(31)
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and the boundary conditions in eqs 16-18 and 28 become

D. Experimental Observables.Equations 31-34 define a
model for the complete solvent responseu(r , t) to electronic
excitation of the solute. However, we are interested in only
one component of that response, the Stokes shift induced by
the reaction of the solvent back on the solute. To calculate the
Stokes shift, eq 26 is integrated to give a potential function for
the movement of the cavity boundary in the ground state

where dΩ ) sinθ dθdæ. If U0 is the vertical transition energy
from the ground-state equilibrium position, the excited-state
potential is

The electronic transition energy is given by the difference
potential

The time-dependent Stokes shiftS(t) is derived from the time-
dependent solvent displacement field

Frequently, we will be most concerned with the solvation
response function, defined as

Noticing that δur(rc,θ,æ;∞) ) rcC(θ,æ) allows the response
function to be written

III. Solution of the Model

The model developed in the last section can be solved
analytically without further approximation, as outlined in the
Appendix. The complete solution decomposes into a summation
of solutions for each multipole moment of the shape change.
This expansion has an analog in the treatment of polar
solvation,46-48 where an arbitrary charge redistribution is
expanded in multipole moments. In the nonpolar model, then

) 0 component represents a spherical change in size upon
excitation. The even components withng 2 represent various
changes in shape with constant total volume. The components
with n odd include a forced displacement of the solute center-
of-mass. The time dependence of the Stokes shift depends only
on n, the principle index of the spherical harmonic, which
determines the shape change in the excited state. The Stokes
shift is independent of the secondary indexm, which determines
the orientation of the shape change.
The solvation response function is the weighted average of

response functions for each multipole component

where thecnm are the multipole moments of the coupling. The
time dependence of each multipole response function is

whereøn(t) is given by eq A18.
Equation 43 shows thatøn(t) is a generalized susceptibility

or impulse response function for the solvation experiment. By
the classical fluctuation-dissipation theorem,49 it can be related
to the equilibrium fluctuations of the Stokes shift

Time domain experiments are typically reported in terms of the
Fourier transform of the susceptibility

which is related to the Laplace transform by the second equality.
The spectral density is defined as-Im øj(ω).
Equations A18-A21 and 43 constitute a complete solution

of the viscoelastic solvation model. The only input needed are
the two time-independent moduli,G(t) andK(t). For simple
exponential functions, the inverse Laplace transform from
øjn(s) to øn(t) can be solved analytically (see section IV.C.), but
for nonexponential functions a numerical inversion is necessary.
The susceptibilitiesøn(t) are defined so as to decay to zero at
infinite time, so a numerical inverse Laplace transform can be
avoided by using eq 45 and an inverse Fourier transform.
This continuummodel of nonpolar solvation can be contrasted

with previous treatments of polar solvation. In the current
model, a full equation of motion (eq 14) is used to calculate
the complete solvent displacement field. The experimental
susceptibility is then projected from the full solvent response.
Previous continuum models of polar solvation have calculated
the experimental susceptibility directly from the bulk dielectric
susceptibility, avoiding a full equation of motion and the
calculation of the complete solvent response.11-17 This latter
approach implicitly invokes a quasi-state approximation, in
which the equivalent of the inertial term of eq 14 is set to zero.44

However, dropping the inertial term precludes propagating,
wavelike motion in the solvent and retains only the diffusive

δεjθr(rc,s) ) δεjær(rc,s) ) δεjθr(∞,s) ) δεjær(∞,s) ) 0 (32)

2µj(s)
∂δujr(∞,s)

∂r
+ [νj(s) - 2µj(s)]∇‚δuj(∞,s) ) 0 (33)

2µj(s)
∂δujr(rc,s)

∂r
+ [νj(s) - 2µj(s)]∇‚δuj(rc,s) -

3Kc

δur(rc,s)
rc

) -3Kc

C(θ,φ)
s

(34)

Ug ) 3/2Ksrc∫δur
2(rc,θ,æ) dΩ (35)

Ue ) U0 - 3Ksrc
2∫δur(rc,θ,æ) dΩ +

3/2Ksrc∫δur
2(rc,θ,æ) dΩ (36)

∆U ) Ue - Ug ) U0 - 3Ksrc
2∫δur(rc,θ,æ) C(θ,æ) dΩ

(37)

S(t) ) U0 - ∆U(t) ) 3Ksrc
3∫[δur(rc,θ,æ;t)/rc]C(θ,æ) dΩ

(38)

R(t) )
S(t) - S(∞)
S(0)- S(∞)

(39)

R(t) ) 1-
∫[δur(rc,θ,æ;t)/rc]C(θ,æ) dΩ

∫C2(θ,æ) dΩ
(40)

R(t) ) ∑
n

wnRn(t) (41)

wn )

∑
m

(cn
m)2

∑
n,m

(cn
m)2

(42)

Rn(t) ) 1-∫0tøn(t′) dt′ (43)

øn(t) ) - d
dt

〈δSn(t) δSn(0)〉

〈δSn
2(0)〉

(44)

ø̂n(ω) )∫0∞e-iωtøn(t) dt ) øjn(iω) (45)
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relaxation contained in the time-dependence of the dielectric
susceptibility itself. Because of this approximation, these earlier
models did not predict inertial dynamics. Unfortunately, writing
an appropriate equation of motion for polar solvation is more
difficult than for nonpolar solvation and must be left to future
work.
Although most of this paper is concerned with the normalized

response function, eq A23 also contains an expression for the
total magnitude of the equilibrium Stokes shift

Using parameters from the systems to which this model has
been fit gives fractional changes in solute radii of 5-6% for
both dimethyl-s-tetrazine inn-butylbenzene26 ands-tetrazine in
propylene carbonate.32 Because this model assumes linear
coupling, it does not distinguish whether this change represents
an expansion or contraction. However, these systems also show
a narrowing of the fluorescence relative to the absorption
spectrum, which indicates a small nonlinear component to the
coupling. By the arguments of Nowak and Bernstein, the sign
of the nonlinearity indicates a contraction, rather than an
expansion.50 Li, Lee, and Bernstein used other methods to
estimate a very similar value of 5-10% for the change in the
effective radius of benzene in alkanes.51 These sizes changes
are small enough that the assumption of weak coupling should
be accurate.

IV. Phonon vs Structural Dynamics

A. Time Scales. Before specializing to specific examples,
we will show that the separation of solvation dynamics into
phonon and structural components is a general prediction of
this model. We wish to emphasize that two time scales for
solvation occur even when there is only one dissipative time
scale for the liquid itself. Thus, we assume that a single time
scale can characterize the relaxation of the moduli (see eq 9)

even though more complicated relaxation is important in many
systems. We will also focus on then ) 0 component, which
involves only longitudinal solvent motion, so it is clear that the
existence of phonon and structural time scales is not related to
the existence of longitudinal and transverse components of a
vector field. Analogous results forn g 1, which also involve
transverse solutions, are cited later.
Begin with the exactn ) 0 solution from eq A18,

The time scaleτs associated withG(t) andK(t) can range
from∼300 fs for low-viscosity liquids to∞ for a glass (eq 47).
In addition, there are two other times associated with this
solution

These represent the time for longitudinal and transverse sound
waves, respectively, to travel a distance of one solute radius, if
the moduli are at their short time values. Taking typical values

for a nonassociated liquid52,53 and a benzene-sized solute (see
Figure 2) giveτt ) 275 fs andτl ) 160 fs. These times are of
the magnitude expected for phonon-induced solvation.
B. Phonon-Induced Solvation. The roles of these three

times becomes clearer in the limit where there is a large
separation between the phonon-propagation times and the
relaxation time of the moduli, i.e.,τl, τt , τs. In the short time
or larges limit (sτs . 1), the moduli approach the valuesµj(s)
f G∞ andνj(s) f M∞. In this limit

Equation 48 reduces to

where the normalized phonon susceptibility is

Equations 53 and 54 can be analytically transformed back
into the time domain. In the case where the solute force constant
is small,Ks < K∞ + (1/3)M∞, the response function is

The total response function along with the corresponding
susceptibility is illustrated in Figure 2 for typical values of the
parameters. The response function shows a rapid decay
followed by weak, underdamped oscillations, settling to a
nonzero value at long time.
In the case where the solute force constant is large,Ks > K∞

+ (1/3)M∞, â is imaginary. Takingâ′′ ) Im â, the response
function is

The response still overshoots the long time asymptote but returns
to the asymptote in an overdamped fashion, without oscillations.
Qualitatively, the solution is in accord with the rapid

component seen in both experiment and simulation of nonpolar
solvation. The decay is subpicosecond in agreement with
experiment.27-33 The time scale of the decay is similar to the
initial decay times found in simulations of nonpolar solva-
tion.19,23,24 Weak oscillations are predicted under some, but not
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all, conditions, in accord with simulation.19,23,24 The decay is
independent of the solvent viscosity and persists even in a glass,
as is found experimentally.27-33

This model provides a simple physical picture for the origin
of these features. In the current approximation, dynamics result
from the propagation of waves in a purely elastic material. The
sudden increase in solute forces att ) 0 launches an acoustic
wavepacket, i.e., creates phonons. This process allows a partial
expansion of the solute cavity and a partial decay of the solvation
response function. The time scale of the decay is determined
by the time needed for the phonon wavepacket to propagate
away from the solute, i.e.,τl. (The corresponding transverse
time τt only occurs inn g 1 solutions. See section IV.D.) The
oscillations in the response function result from the back-reaction
of the tail of the oscillating wavepacket on the solute cavity. In
real solvents, the wavepacket damps quickly after leaving the
solute, but this is not important to the solvation process. The
solvation decay does not represent a dissipative relaxation within
the solvent, but rather a phonon-propagation time. The solvation
does not result from dissipation of the solute energy directly
into thermal energy but from a transfer of energy into a coherent
solvent excitation.
Further expansion of the cavity requires dissipative, viscous

flow and occurs on a longer time scale. The fraction of the
expansion accomplished by phonon creation is given byf in eq
53. In the terminology of scattering experiments,f is the
Debye-Waller factor, i.e., the fraction of the scattering in the
quasielastic peak. It is determined by the strength of the
solvent-solute force constant relative to the shear modulus of
the solvent (eq 56). A stronger solute-solvent force constant
is able to expand the solute cavity more effectively by elastic
processes, and a greater fraction of the solvation is due to
phonon creation.
Although the continuum model is good at reproducing most

of the general properties of the short time solvation dynamics,
it is qualitatively in error at the very earliest times. This is

most easily seen in Figure 2b. The susceptibility should be
continuous acrosst ) 0, but the continuum prediction undergoes
a step discontinuity. This error also shows up in the response
function (Figure 2a) as a nonzero derivative att ) 0 and in the
spectral density (Figure 3) as a too slow decay at high
frequencies.
The correct limiting behavior of the response function is54

The quadratic term represents the free streaming motion of the
molecules, without any influence from intermolecular forces,
which is sometimes referred to as ballistic dynamics.18 A simple
truncation of eq 61 diverges at long time. The simplest way to
form a well-behaved response function is to complete eq 61 as
a Gaussian4

These two approximations are illustrated in Figure 2a,b as a
contrast to the continuum prediction. The error in the continuum
model is important for the first∼100 fs. After 100 fs, the
continuum model is expected to give more reasonable results
than the short time approximations. It contains the collective
effects needed to describe oscillations and the halt at a nonzero
value. A ballistic treatment does not represent these effects
accurately.
The origin of the error in the continuum model is directly

linked to the lack of molecular structure in the solvent. In a
real solvent, the solute-solvent force acts directly on individual
solvent molecules, each of which has a finite mass. The initial
acceleration of these molecules is finite and determined only
by the solute force and the mass of the molecules; changes in
forces from other molecules are not felt at first. In the
continuum model, there is no molecular structure, and therefore
no minimum quantum of mass. The solute exerts a finite force
on a sharp boundary, and the first infinitesimal layer of solvent
experiences an infinite acceleration. This unphysical effect
causes the incorrect behavior at early times.
From these observations, several comments can be made on

classifying the time regions of solvation and the terminology
used to describe them. On long time scales (>0.5 ps), relaxation
is dominated by reorganization of the solvent structure and is
accurately described as structural or dissipative relaxation. This
process will be discussed in more detail in the next section.
The fast solvation component (<500 fs) is due to the propaga-
tion of phonons and is accurately described as phonon-induced
relaxation. The existence of this component is directly linked
to the inclusion of inertial terms in the equation of motion of
the solvent. Thus, it is also accurate to describe this relaxation
as “inertial”. The inertial relaxation is a collective property of
the solvent and, at a qualitative level, does not require the
inclusion of molecular structure in the solvent. The idea of
“single-molecule” dynamics is incorrect for describing this entire
time region. It fails to explain the halt of the relaxation at a
nonzero value and does not permit oscillation in the response.
Single-molecule or “ballistic” dynamics are appropriate terms

when eq 61 is a valid description. This time regime is confined
to <100 fs and constitutes only a portion of the total inertial
decay. It is only during this early time that the existence of
molecular structure plays a primary role. At later times,

Figure 2. Short time, phonon approximation for nonpolar solvation
dynamics on the inertial time scale (solid curves): (a) the total response
function, (b) the phonon-induced susceptibility. Ballistic dynamics
(dotted curve) have the correctt f 0 behavior but diverge at long times.
The Gaussian approximation (dot-dashed curves) converges at long
times but does not capture the damped oscillations or nonzero asymptote
predicted by the phonon approximation. The curves are calculated for
a typical set of parameters,r ) 3 Å, F ) 1 g/cm2, G∞ ) 1.2× 1010

dyn/cm2, K∞ ) (5/3)G∞, Ks ) K∞. The ballistic time,τb ) 58 fs, was
chosen for illustrative purposes.
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molecular structure needs to be included for quantitative
accuracy, but the major qualitative effects can be understood
from a continuum point of view.
Originally, the terms ballistic18 and inertial4 dynamics were

both coined to describe free-streaming motion. In subsequent
usage, they have both been used to refer to all fast dynamics.
In light of our arguments that free-streaming motion applies to
only the earliest portion of the fast dynamics, we believe it is
useful to reserve the term ballistic for free-streaming motion
and to use inertial to describe all of the fast dynamics resulting
from momentum effects in the solvent.
A final comment concerns the utility of the spectral-density

representation as opposed to a time-domain representation. It
has become increasingly common to convert time-domain data
to the spectral-density representation. In part, the hope is that
the spectral density from a specific experiment corresponds
closely to the density of some type of intrinsic modes of the
solvent, perhaps weighted by appropriate coupling factors.55,56

Instantaneous normal modes are a popular candidate for the
intrinsic modes.57 Instantaneous normal modes are exact
harmonic modes of the system at short times. In the continuum
model, we have the advantage of knowing the instantaneous
normal modes of the solvent exactly; they are the plane waves
of Debye model.
The Debye density of states is plotted against the spectral

density from the solvation experiment in Figure 3. Unfortu-
nately, there is not a simple relationship between the two. In
particular, the Debye frequency is not simply related to the
phonon-induced solvation time. Although a coupling function
could be defined so as to divide the spectral density into an
intrinsic density and a coupling, the coupling function would
be too complex for simple interpretation. In fact, the entire
viscoelastic model presented here can be regarded as the
calculation needed to obtain this coupling function, and the
recognition of the existence of instantaneous normal modes does
not reduce the complexity of the calculation.
C. Structural Relaxation. To complement the short time

approximation that led to phonon relaxation in the last section,
this section looks at a time course-grained approximation, again
assuming a time-scale separation,τl, τt , τs. The exact solution
(eq 48) can be course-grained in time with respect toτt andτl
by taking the limitx,y f 0

In the time domain, the first, constant term in this expression
translates into an instantaneous Stokes shift following excitation

or aδ-function component in the response function

It is a course-grained representation of the phonon-induced
relaxation discussed in the previous section. The course-grained
approximation contains information on the magnitude of the
phonon-induced relaxation, but no details of its time dependence.
The structural susceptibility

and the corresponding structural response functionR0st(t)
describes dissipative solvation at long times due to relaxation
of the moduli, i.e., due to relaxation of the original solvent
structure. It is unaffected by phonon propagation and is
independent of the time scalesτl and τs. The structural
relaxation time scale is directly related to the shear relaxation
time scale given byG(t). In turn, the shear relaxation time scale
is directly related to the solvent viscosity (eq 47). As the
temperature is lowered, the structural solvation slows in
proportion to the increasing viscosity and freezes in at the glass
transition, where the viscosity diverges. This is in accord with
the experimental observations of a long, viscosity-dependent
component in nonpolar solvation.27-34 It is interesting to note
that the compression modulus does not appear in the expression
for structural relaxation forn ) 0; the relaxation is determined
only by the shear relaxation function.
Further discussion of structural relaxation requires a specific

model forG(t). As a simple illustrative example, we introduce
the Maxwell model,45 which posits exponential relaxation of
the shear modulus,

and

For this model, eq 65 can be inverted analytically to give the
course-grained solvation response function

Figure 4 shows this function as well as the corresponding
spectral density. The structural solvation time is proportional
to, but not equal to, the shear relaxation time. In the case of an
exponential shear relaxation function, the solvation response is
also exponential. However, for nonexponential relaxation, the
shapes ofG(t) andR(t) differ.26

This model provides a simple physical interpretation of
structural solvation. The initial expansion of the cavity by
phonon creation creates strain within the effectively elastic
solvent. Structural relaxation represents the release of that strain
through viscous flow. Unlike the phonon-induced relaxation,
structural relaxation is a directly dissipative transfer of energy
into incoherent solvent energy. Although the dynamics of
structural relaxation are approximately independent of the
phonon-induced relaxation time, there is an essential interde-
pendence between the processes. Phonon-induced solvation sets
up the initial conditions for the structural relaxation, and as a

Figure 3. Spectral density predicted by the phonon approximation
(solid curve). The spectral density does not have a simple relationship
to the solvent density of states (dashed curve), which is simply the
Debye density of states. The viscoelastic model does not have the
correct high-frequency behavior, which is illustrated by the Gaussian
approximation (dot-dashed curve). See Figure 2 for parameters.
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result, the magnitude and rate of the structural solvation are
dependent on the magnitude of the phonon-induced solvation.
D. Size vs Shape Changes.The discussion above was

confined to size changes,n) 0. However, essentially the same
analysis holds for shape changes,n g 1. In thex,y f 0 limits,
corresponding to structural relaxation, eqs 56, 64, and 65 still
hold if the shear impulse response functionµj(s) is replaced by

and the high-frequency shear modulusG∞ is replaced byG∞
n

) µjn(∞). The only important change is that both the longitu-
dinal and shear impulse response functions are involved in the
structural relaxation following a shape change, whereas only
the shear modulus in involved with a size change. However,
both moduli relax on a similar time scale and show a similar
slowing at low temperatures and high viscosities, so the
qualitative behavior of structural relaxation is the same, regard-
less of the value ofn.
In the s f ∞ case, corresponding to phonon-induced

solvation, the formulas analogous to eq 54 become increasingly
complex asn increases. However, only two time constants are
involved. Both the longitudinal and shear wave propagation
times, τl and τs, are involved forn g 1, whereas onlyτl is
involved in then ) 0 case. However,τl andτs differ by only
a factor of (G∞/M∞)1/2. The two times are similar in magnitude,
subpicosecond and independent of viscosity. Again the qualita-
tive features of phonon-induced solvation are the same regard-
less of the value ofn. The model predicts that the separation
of the solvation dynamics into distinct phonon and structural
components occurs for changes in shape as well as for changes
in size.

V. Separability of Phonon and Structural Dynamics

A. Phonon-Structure Approximation. Examining the
short and long time approximations in eqs 53 and 63 im-
mediately suggests a simple approximation, in which the full

response function is the sum of the phonon and structural
limiting response functions

This phonon-structure approximation has been used in previous
comparisons of this theory to experimental data.26,32 Within
this approximation, the experimental response function can be
decomposed into two processes with independent time scales
and decay characteristics. The structural relaxation is unaffected
by the phonon timeτph, and the phonon solvation is unaffected
by the shear relaxation timeτs. If the weak temperature
dependence ofG∞ is neglected, the phonon solvation is
independent of the solvent viscosity and temperature.
The accuracy of this approximation for the Maxwell model

is examined in Figures 5 and 6 in the time and frequency
domains, respectively. At large viscosities, the structural and
phonon time scales are well separated, and the error in eq 70 is
negligible. The structural and phonon components are clearly
separated in both the time and frequency domains. At a
moderate viscosity of 1 cP, the phonon and structural relaxation
times are less well separated. A plateau no longer exists in the
time domain, and the frequency domain peaks overlap. None-
theless, the phonon-structure approximation remains accurate,
and the response can be decomposed into two components. The
approximation only breaks down at very low viscosities, where
the structural and phonon times become very close.
B. An Exact Time-Scale Separation. Although the de-

composition of the response into independent phonon and
structural components breaks down at low viscosity, the ability
to decompose the total response into two components is more
robust. In Figure 6, a discernable shoulder exists even at 0.15
cP. Despite the small separation between phonon-induced and
structural times and the significant error in the phonon-structure
approximation, it still appears that the spectral density should
be described as two overlapping peaks. In fact, it can be shown
that decomposition into two peaks is still correct, even without
a separation of time scales.

Figure 4. Time-course-grained, structural approximation to nonpolar
solvation dynamics (solid curves): (a) the total response function, (b)
the corresponding structural spectral density (Maxwell model, see Figure
2 for parameters).

µjn(s) ) µj(s)
(n+ 2)

4
(2n2 + 1)νj(s) - 2n(n- 1)µj(s)

(n+ 1)(n+ 1/2)νj(s) + nµj(s)
(69)

Figure 5. Exact solution of the continuum model for the solvation
response function with Maxwell relaxation (solid) compared to the
phonon-structure approximation (dashed) at several viscosities. The
approximation becomes exact at high viscosity but develops modest
errors at low viscosity. (See Figure 2 for parameters.)
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Within the Maxwell model, the response can be exactly
decomposed into fast and slow components, regardless of the
relative sizes of the phonon and structural times

Examples of the decomposition of the total response into fast
and slow components are shown in the time domain in Figure
7 and in the frequency domain in Figure 8. Each component
still has its own time scale. The decay ofR0fa is confined near
τph and the decay ofR0sl is confined nearτs, or in the frequency
domain the fast component is peaked near 1/τph and the slow
component is peaked near 1/τs.
For comparison to this exact decomposition, the approximate

phonon-structure decomposition is also shown in Figures 7 and
8. Equations 72 and 73 show that the fast and slow components
contain correction terms to the phonon and structure approxima-
tions. These terms vanish at high viscosity, where there is a
large time-scale separation,τph/τs , 1. This result emphasizes
the fact that the phonon-structure approximation is the con-
sequence of a time-scale separation, rather than of the smallness
of a coupling term in the Hamiltonian.
Although a time-scale separation is required for the math-

ematical simplification of the phonon-structure approximation
and for the interpretation of the two components as purely
phonon and purely structural processes, a time-scale separation
is not needed for the full response function to be exactly
decomposable into a sum of components. The essential
difference between the two decompositions is that in the
approximate phonon-structure decomposition, the two com-
ponents have independent shapes, whereas in the exact fast-
slow decomposition, the time scale of one component affects
the details of the shape of the other component. When external
conditions such as the temperature or viscosity change, the
phonon-structure approximation predicts that the components
will simply shift in time. The exact result predicts that the two

Figure 6. Exact solution of the continuum model for the solvation
spectral density with Maxwell relaxation (solid) compared to the
phonon-structure approximation (+) at several viscosities. The cor-
responding phonon (dash-dotted) and structural (dashed) components
are also shown. The approximation becomes exact at high viscosity
but develops modest errors at low viscosity. (See Figure 2 for
parameters.)
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Figure 7. Two decompositions of the exact response function (solid)
at several viscosities: the exact decomposition into fast and slow
components (dashed) and the approximate decomposition into phonon
and structural components (dotted). At high viscosity, the two
decompositions become indistinguishable. For clarity, the amplitude
of the structural and slow componentsf has been added to the phonon
and fast curves.
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components will interact as their time scales become compa-
rable, and simply scaling high-viscosity results in time will not
be sufficient to predict the low-viscosity results.

VI. Spectroscopic vs Dynamical Approaches to Multiple
Time Scales

The existence of phonon and structural time scales in nonpolar
solvation dynamics is a specific example of the occurrence of
multiple time scales in liquid dynamics, a theme that is currently
prominent in a variety of contexts.3-7 One method for analyzing
these multiple time scales is what I will call the “spectroscopic”
approach. This method has the greatest intuitive appeal when
results are expressed as spectral densities and multiple time
scales appear as multiple peaks in the frequency domain. In
analogy with the analysis of optical spectra, each peak is
assumed to be associated with a different coordinate. These
coordinates are assumed to be independent in the sense that
they allow a zeroth-order Hamiltonian for the system to be
separated into a sum of independent terms. Higher order terms
in the Hamiltonian cause damping of the coordinates and
broadening of the peaks in the spectral density. In this approach,
the essential approximation is that these higher order couplings
are weak enough that the dynamics of each coordinate remains
relatively simple.
The primary observable consequence of these assumptions

is that the total spectral density or response function can be
decomposed into the sum of two or more components. In
addition, the components are completely independent. For
example, their responses to changes in experimental conditions,
such as temperature or viscosity, are not directly related.
Multimode Brownian oscillator models are currently popular
means of implementing this approach.38

If the spectroscopic approach is adopted, the essential
problems are decomposing experimental results into the correct
number of peaks and assigning each of the corresponding
coordinates to specific molecular motions. Because the dynam-
ics of each mode are assumed to be simple, the experimentally
observable spectral density should be a direct representation of
a complete set of coordinates or modes of the liquid filtered by
a set of coupling constants, much as an infrared spectrum is a
reflection of the complete set of molecular vibrations weighted
by infrared cross sections. In the instantaneous normal mode
approach, the description of liquids by such a set of modes has
been proven to be accurate for sufficiently short time intervals.54

However, arguments have also been made that such a set cannot
be accurate for all times58 and thus will not be able to deal
with the problem of multiple time scales.
The viscoelastic continuum model of solvation presented here

is a specific example demonstrating that the existence of multiple
time scales does not require a spectroscopic explanation. It is
an example of what I will call a “dynamical” approach. Because
the continuum model is so simple, it is easy to see that there is
not an undiscovered coordinate transformation that will bring
it into correspondence with the spectroscopic approach.
In the continuum model of nonpolar solvation, the existence

of two peaks in the spectral density is due to the inherently
complex dynamics of a single coordinate, not due to two
coordinates with simple dynamics. The cavity radius is the only
collective solvent coordinate directly coupled to the solute. In
the n ) 0 case, only longitudinal motion is involved, so the
longitudinal-transverse dichotomy is not responsible for the
multiple time scales. For the Maxwell model, only a single
relaxation time scale is assumed, so there is not a hidden
assumption of multiple time scales in the input functions.
Although the Hamiltonian for the solvent is approximately
separable into an infinite set of zero-order modes for short time
intervals, these modes do not have the direct relationship to the
solvation spectral density that the spectroscopic approach seeks.
In particular, the spectrum of short-time solvent eigenvalues
by itself does not give any indication that two distinct time scales
will be found in the model.
Within the current model of nonpolar solvation, the existence

of multiple time scales is due to inherently complex dynamics
along a single coordinate. The two components of the
experimental response function are due to two different stages
of relaxation: in this case, coherent phonon emission, followed
by dissipative relaxation of the stresses created in the first stage.
The interpretation given above in terms of distinct phonon

and structural relaxation processes is dependent on an assump-
tion of a separation of time scales. However, the ability to
decompose the spectral density into separate components is not
dependent on this assumption. The exact solution of the
continuum model decomposes into two components, even when
the peaks in the spectral density are heavily overlapped. The
components are directly interrelated in the sense that the
magnitude and rate of the slower component depend on the
conditions established by the faster component and in that
changing the time scale of one component can alter the details
of the peak shape of the other component. Thus the fact that a
single experimental spectral density is well represented as a sum
of components is not sufficient to prove that the underlying
Hamiltonian separates into a sum of components or that the
two components represent fully independent processes.
One approach to distinguishing between spectroscopic and

dynamic explanations has been illustrated in Figure 5. At high
viscosities and low temperatures, where a good time-scale

Figure 8. Two decompositions of the exact spectral density (solid) at
several viscosities: the exact decomposition into fast, slow components
(dashed), and the approximate decomposition into phonon and structural
components (dotted). At high viscosity, the two decompositions become
indistinguishable.
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separation exists, suitable high-frequency (microscopic peak)
and low-frequency (R peak) limiting forms can be fit to the
well-separated peaks. In the spectroscopic approach, these
forms can be simply scaled in frequency to generate results at
low viscosity. In Figure 6, this procedure is represented by
the phonon-structure approximation. In the dynamic approach,
this procedure only generates an approximation to the true
results, and deviations will be seen as the time-scale separation
is decreased. This procedure has been applied frequently to
neutron and light scattering and to dielectric relaxation, with
the result that deviations often are seen at intermediate frequen-
cies.1 In spectroscopic terminology this represents a new
component,â-relaxation, but from a dynamical point of view,
it represents an essential interaction between the early and late
stages of a complex relaxation.
Although this paper has focused on the simplest case of

single-exponential structural relaxation, nonexponential relax-
ation is common, especially at high viscosity. The general
comments made here can be applied to explaining multiple
structural time scales. In a spectroscopic approach, the non-
exponential decay is analyzed as a superposition of separate
exponential decays. In a dynamical approach, it is regarded as
an intrinsic property of a complex relaxation. Mode-coupling
theory is such a dynamical theory for the form of structural
relaxation.59-61 Hole-burning experiments on nonpolar solva-
tion have shown that mode-coupling theory is in agreement with
the viscosity dependent changes in the form of the structural
relaxation.33,34 Recent work by Bhattacharyya and Bagchi has
shown how multiple time scales arise in the mode-coupling
treatment of the friction experienced by a diffusing particle.62

Another approach to distinguishing between spectroscopic and
dynamical approaches is the use of high-order spectroscopies.38

In the context of solvation, data on the hole-burning widths
provides a higher order measurement related to the peak shifts
calculated in this paper. Further experimental work is needed
in this area. In nonresonant four- and six-wave mixing
experiments, Steffen and Duppen have noted difficulties in
reconciling the multiple time scales observed with Brownian
oscillator models.63 Further theoretical work is needed to
determine if such results are indicative of a dynamical origin
of the observed time scales.

VII. Summary

This paper has presented a continuum model for nonpolar
solvation, which is an analog of continuum models of polar
solvation.8-17 It shows that the dynamics of nonpolar solvation
depend on the relaxation of mechanical moduli in much the
same way that the dynamics of polar solvation depend on
dielectric relaxation. As is the case with polar solvation, the
current model is expected to benefit from the addition ofk-vector
dependence to the moduli and nonspherical shapes to the solute
cavity.9 Generalized hydrodynamics35 provides a route for
systematically improving the viscoelastic model and making the
connection to molecularly based theories.18-25 Although lacking
these refinements, the current model has the advantage of having
compact, analytical solutions, which simplifies the discussion
of the general trends and features of nonpolar solvation. In
addition, the accuracy of the model is sufficient to interpret
experiments26,32 and computer simulations.42

Unlike previous continuum models of solvation, this model
specifically addresses the issue of inertial dynamics. A full
equation of motion, including both inertial terms and mechanical
susceptibilities, was derived to describe the liquid dynamics.
As a result, both a rapid viscosity-independent inertial process

and a slower viscosity-dependent structural relaxation were
predicted. In this model, the essential difference between these
two processes is that the structural relaxation is strictly dissipa-
tive, whereas the inertial component is a coherent transfer of
energy to well-defined solvent excitations (which decay dissi-
patively at a later time).
The success of a continuum model in describing short time

dynamics should not be surprising. A good description of the
velocity autocorrelation function can be obtained from a
continuum model even in the 100 fs region.36,37 As in the
continuum model of solvation, errors in the limiting behavior
are found at the very earliest times, but these comprise only a
small fraction of the total correlation function. The fundamental
physics at short times involves the propagation of sound waves,
and the time scales are set by sound propagation times. To a
first approximation, these times may be obtained in either a
molecular description from molecular masses and intermolecular
potentials or in a continuum description from the density and
moduli.64

On the basis of the results of this model, several general
comments were made about liquid dynamics. First, the idea of
ballistic or single-molecule dynamics was distinguished from
inertial dynamics. Many important features of inertial dynamics
are captured in a continuum treatment, which lacks any
molecular structure, but are not well represented by ballistic
models. Conversely, a continuum picture does not treat the very
early ballistic dynamics correctly. Inertial dynamics encompass
a longer time regime than the short-time ballistic approximation
does, and many of the important features of inertial dynamics
are fundamentally collective.
Second, the results in this paper were presented in both the

time domain and as spectral densities. Because the underlying
modes of the continuum model are known exactly, it is easy to
see that there is no simple relationship between the spectral
density and intrinsic modes of the liquid. At least in the case
of nonpolar solvation, the spectral-density representation does
not appear to have any advantage over the time-domain
representation.
Lastly, I contrasted spectroscopic and dynamical approaches

to explaining the existence of multiple time scales in liquid
dynamics. Despite major conceptual differences in these two
approaches, the differences in predicted experimental results are
subtle. In particular, both approaches predict that the observable
response function or spectral density is decomposable into two
components. Clearly, the ability to decompose experimental
data into a sum of multiple components does not, by itself,
demonstrate the existence of multiple solvation coordinates.
Experiments specifically directed toward distinguishing these
two approaches are needed.
Of course, this model by itself cannot prove the validity of

these ideas in real liquids. However, this model does provide
a specific example of an alternative to several currently popular
methods of analyzing liquid dynamics. I hope it raises questions
that will stimulate and direct further theoretical and experimental
efforts to clarify the best approaches to understanding the
dynamics of liquids and other complex systems.
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Appendix

Equation 31 is a standard vector wave equation, and with
spherical boundary conditions, it can be solved analytically by

28 J. Phys. Chem. A, Vol. 102, No. 1, 1998 Berg



standard methods.65 The first step is to expand the coupling in
spherical harmonics

We use complex spherical harmonics withδ-function normal-
ization.66 (Thus, for a purely spherical expansion,cnm )
x4πδr/r.)
With the expansion of the coupling in multipole moments,

the solvent displacement also decomposes into multipole
moments

where each componentδujnm(r ,s) is a solution of eqs 31-34
with Xnm(θ,æ) replacingC(θ,æ) in eq 34. Each component of
the displacement is further expanded in vector spherical
harmonics

Because only outgoing waves are anticipated, vector spherical
harmonics of the third kind as defined by Morse and Feshbach
are used.65 They are defined in terms of the Hankel functions
hn(r)

with the scaled distances

The Ln
m(r ) are longitudinal solutions, and theNn

m(r ) are
transverse solutions. TheMn

m(r ) are torsional waves that are
never excited by a quasi-spherical solute with slip boundary
conditions, i.e.,AhMn(s) ) 0.
With this basis set, it is a tedious, but straightforward,

calculation to find the amplitudes in eq A3 that satisfy the
boundary conditions in eqs 32-34. The results are

in terms of the unitless variables

and the auxiliary functions

As implied by the notation, the amplitudes of the vector
harmonics are independent ofm. In the case of a size change
(n ) 0), the solution is completely longitudinal. However, in
the case of a shape change (n g 1), both longitudinal and
transverse solvent motions are excited.
The equations above give a complete solution for the time-

dependent solvent displacement field throughout space. Cal-
culating the Stokes shift only requires the radial component at
the cavity boundary, which is given by

where the important time/frequency dependence has been
isolated into the function

Inserting eqs A17 and A2 into eq 38 shows that the total Stokes
shift is the sum of Stokes shifts attributable to each of the
multipole moments of the coupling

Each multipole component of the Stokes shift is simply related
to øn(t)

C(θ,æ) ) ∑
m,n

cn
mXn

m(θ,æ) (A1)

δuj(r ,s) ) ∑
m,n

cn
mδujn

m(r ,s) (A2)

δujn
m(r ,s)s/rc ) AhL

n(s) Ln
m(r ) + AhM

n(s) Mn
m(r ) +

AhN
n(s) Nn

m(r ) (A3)

Ln
m(r ) ) ∇r l[hn(r̃ l) Xn

m(θ,æ)] (A4)

Nn
m(r ) ) n(n+ 1)

hn(r̃ t)

r̃ t
Xn

m(θ,æ)r̂ +

[ r̃ t∇rtXn
m(θ,φ)]1

r̃ t

d
dr̃ t
[ r̃ thn(r̃ t)] (A5)

r̃ t ) [-s2F
µj(s) ]1/2r (A6)

r̃ l ) [-s2F
νj(s) ]1/2r (A7)

AhL
n )

3z2Hn(x)

Bn(x,y) Hn(x) - n(n+ 1)Dn(y) En(x)
(A8)

AhN
n ) {0; n) 0

Dn(y)

Hn(x)
AhL

n; ng 1
(A9)

x) isrc[F/µj(s)]
1/2 (A10)

y) isrc[F/νj(s)]
1/2 (A11)

z) isrc[F/Ks]
1/2 (A12)

Bn(x,y) ) (4x2 + 3

z2)hn′(y) + [1-
2n(n+ 1)

x2 ]hn(y)y (A13)

Dn(y) ) hn′(y) -
hn(y)

y
(A14)

En(x) ) 2

x2
hn′(x) - (2x2 + 3

z2)
hn(x)

x
(A15)

Hn(x) ) hn′(x) + [(x2/2)- (n2 + n- 1)]
hn(x)

x
(A16)

[δujn
m(rc,θ,æ;s)]r ) rccn

møjn(s) Xn
m(θ,æ)/s (A17)

øjn(s) )
3KsUn(x,y)

[3Ks - 2(n- 1)(n+ 2)µj(s)]Un(x,y) - µj(s)x2Vn(x,y)

(A18)

Un(x,y) ) Pn+1(x) Pn+1(y) - nPn+1(x) Pn(y) - [(n+ 1)+

(x2/2)]Pn(x) Pn+1(y) + n(x2/2)Pn(x) Pn(y) (A19)

Vn(x,y) ) Pn+1(x) Pn(y) + n(n+ 1)Pn(x) Pn+1(y) -

[(x2/2)+ (n+ 1)(n- 1)2]Pn(x) Pn(y) (A20)

Pn(z) ) ∑
j)0

n (2n- j)!

2n-j(n- j)!j!
(zi)

j

(A21)

S(t) ) ∑
n

Sn(t) (A22)

Sn(t) ) 3Ksrc
3[∑

m

(cn
m)2]∫0tøn(t′) dt′ (A23)
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